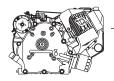


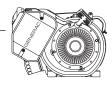
FOREWORD

This manual has been written and published by GENERAC[®] POWER SYSTEMS, INC. to aid our dealers' mechanics, company service personnel and general consumers when servicing the products described herein.

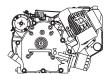
It is assumed that these personnel are familiar with the servicing procedures for these products, or like or similar products, manufactured and marketed by GENERAC® POWER SYSTEMS, INC. It is also assumed that they have been trained in the recommended servicing procedures for these products, which includes the use of mechanics hand tools and any special tools that might be required.


Proper service and repair is important to the safe, economical and reliable operation of the products described herein. The troubleshooting, testing, service and repair procedures recommended by GENERAC® POWER SYSTEMS, INC. and described in this manual are effective methods of performing such operations. Some of these operations or procedures may require the use of specialized equipment. Such equipment should be used when and as recommended.

We could not possibly know of and advise the service trade of all conceivable procedures or methods by which a service might be performed, nor of any possible hazards and/or results of each procedure or method. We have not undertaken any such wide evaluation. Therefore, anyone who uses a procedure or method not recommended by the manufacturer must first satisfy himself that neither his safety, nor the product's safety, will be endangered by the service or operating procedure selected.


All information, illustrations and specifications contained in this manual are based on the latest product information available at the time of publication. However, GENERAC® POWER SYSTEMS, INC. reserves the right to change, alter or otherwise improve the product at any time without prior notice.

Some components or assemblies of the product described in this manual may not be considered repairable. Disassembly, repair and reassembly of such components may not be included in this manual.


The engines described herein may be used to power a wide variety of products. Service and repair instructions relating to any such products are not covered in this manual. For information pertaining to use of these engines with other products, refer to any owner's or service manuals pertaining to said products.

DIMENSIONS AND FEATURES	3-7	Removal	19
		Installation	19
4-CYCLE ENGINE THEORY	8	LINKAGE INSTALLATION	20
		GOVERNOR ADJUSTMENT	20-21
SECTION 1: GENERAL	9-12	Initial Adjustment	20
PURPOSE AND SCOPE OF MANUAL	9	Running Adjustment	20-21
LARGE FRAME ENGINESLONG BLOCK		SECTION 4: OPTIONAL IDLE CONTROL	22-23
ENGINE I.D. NUMBER/SERIAL NUMBER		GENERAL	22
ENGINE CARE	10	OPERATING INSTRUCTIONS	22
Recommended Fuels	10	Before Start-up	22
Recommended Engine Oil		Engine Running	22
Change Oil Filter		CIRCUIT OPERATION	
STORAGE INSTRUCTIONS		IDLE CONTROL ADJUSTMENT	22-23
TUNE-UP PROCEDURE		General	22
OVERSIZE PARTS		Initial Adjustment	22-23
SECTION 2: AIR CLEANERS AND CARBURE	TION 14-17	Final Adjustment	
AIR CLEANER	14	SECTION 5: REWIND STARTERS	24-25
Servicing	14	GENERAL	24
Foam Pre-Cleaner	14	REWIND ASSEMBLY REMOVAL	24
Paper Filter		DISASSEMBLY (OLD STYLE)	25
Air Cleaner Box Removal		REASSEMBLY	25
Air Cleaner Box Installation		DISASSEMBLY (NEW STYLE)	25
CARBURETION		SECTION 6: ELECTRIC STARTERS AND BATTER	HES 26-28
General			
Common Carburetor Problems		INTRODUCTION	
Carburetor Removal		STARTER CONTACTOR SYSTEM	
		HEAVY DUTY SWITCH SYSTEMSTARTER MOTOR OPERATING PRINCIPLES	
Carburetor Disassembly		THE BENDIX DRIVE	
Carburetor Cleaning and Inspection		STARTER MOTOR REPAIRS	
Carburetor Reassembly		Starter Motor Removal	
Carburetor Installation		Starter Motor Installation	
CARBURETOR ADJUSTMENT		TESTING THE STARTER MOTOR	
Initial Adjustment		Checking the Pinion	
Final Adjustment	17		
SECTION 3: MECHANICAL GOVERNOR	18-20	Tools for Starter Performance Test Starter Performance Test	
		BATTERY MAINTENANCE	
GOVERNOR OPERATION			
GOVERNOR EXTERNAL PARTS		General	
GOVERNOR EXTERNAL PARTS		Inspecting the Battery	
Without Automatic Idle Control		Electrolyte Level	
With Automatic Idle Control		TESTING A BATTERY	27-28
Removal of Governor External Parts		SECTION 7: COVERS AND SHROUDS	29
Installation of Governor External Parts		GENERAL	20
GOVERNOR GEAR SHAFT REPLACEMENT		Installation of Covers and Shrouds	
Inspection	19	installation of Covers and Shrouds	29

SECTION 8: IGNITION SYSTEM	30-31	SECTION 11: CRANKSHAFT, CAMSHAFT	. 42.45
GENERAL	30	AND BALANCER	
MAJOR COMPONENTS	30	CRANKCASE COVER REMOVAL	
IGNITION COIL ASSEMBLY	30	CRANKSHAFT, CAMSHAFT AND BALANCER R	
SPARK PLUG	30	BALANCER INSPECTION	
FLYWHEEL	30-31	CAMSHAFT INSPECTION	
Checking Flywheel Magnet	30	CRANKSHAFT INSPECTION	
Flywheel Key	30	Crankshaft Proper	
Flywheel Removal	30-31	Crankshaft Sleeve Bearing	
Flywheel Installation		COMPRESSION RELEASE	
TESTING THE IGNITION SYSTEM		CRANKSHAFT INSTALLATION	
		CAMSHAFT INSTALLATION	
SECTION 9: VALVE TRAIN	32-36	BALANCER INSTALLATION	45
MAJOR COMPONENTS		SECTION 12: LUBRICATION	46-51
DISASSEMBLY		GENERAL	46
VALVE SERVICE	33	OIL FLOW	
Valves	33	OIL PICKUP ASSEMBLY	
Valve Seats	33	Description	
Valve Tappets	34	Inspection	
Valve Springs	34	OIL PUMP	
Valve Guides	34	Description	
INSTALLATION		Inspection	
ADJUSTING VALVE CLEARANCE		PRESSURE RELIEF VALVE	
INSTALL ROCKER ARM COVER	36	Description	
SECTION 10: PISTON, RINGS AND RO	D 38-41	Inspection	
GENERAL		CRANKSHAFT OIL SEALS	
REMOVAL		Description	48
PISTON		Seal Replacement	
Removal from Connecting Rod		BREATHER ASSEMBLY	
Check Piston for Wear		Description	49
PISTON RINGS		Inspection	
General		CRANKCASE COVER	
Description		Description	
Ring End Gap		Inspection	49
CONNECTING ROD		Governor Gear Installation	
ASSEMBLY AND INSTALLATION		Crankcase Cover Installation	
Assembly		OPTIONAL OIL FILTER	
Installation		LOW OIL PRESSURE SYSTEM	
CYLINDER SERVICE			
Inspection		SECTION 13: TROUBLESHOOTING	52-54
Reboring the Cylinder		CDECIEICATIONIC	EE 64
Reporting the Cylinder	41	SPECIFICATIONS	55-61

If you don't understand any portion of this manual, contact an authorized Generac service dealer.

Throughout this publication, DANGER, WARNING and CAU-TION blocks are used to alert you to special instruction about a particular operation that may be hazardous if performed incorrectly or carelessly. Observe them carefully.

These safety warnings cannot eliminate the hazards that they indicate. Strict compliance with the special instructions while performing the service plus "common sense" are major measures to prevent accidents.

The following definitions apply to DANGER, WARNING, CAUTION and NOTE blocks found throughout the manual.

DANGER: After this heading you can read handling, installing, operating or servicing instructions that, if not strictly complied with, will result in personal injury.

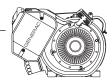
WARNING: After this heading you can read handling, installing, operating or servicing instructions that, if not strictly complied with, may result in personal injury.

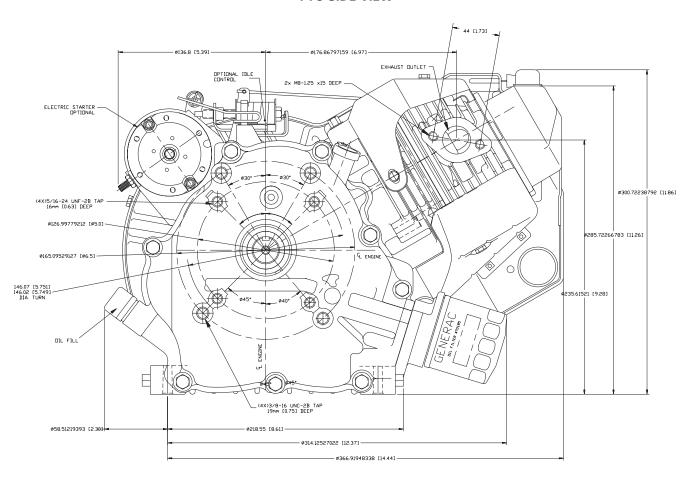
CAUTION: After this heading you can read instructions for handing, installing, operating or servicing the engine that, if not strictly complied with, may result in damage to equipment and/or property.

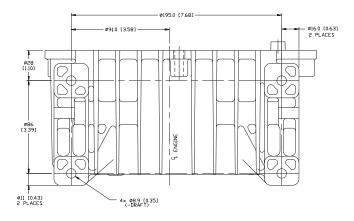
NOTE: After this heading you can read explanatory statements that require special emphasis.

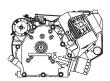
In addition to the DANGER, WARNING, CAUTION and NOTE blocks, the following blocks indicate specifications or capacities as noted.

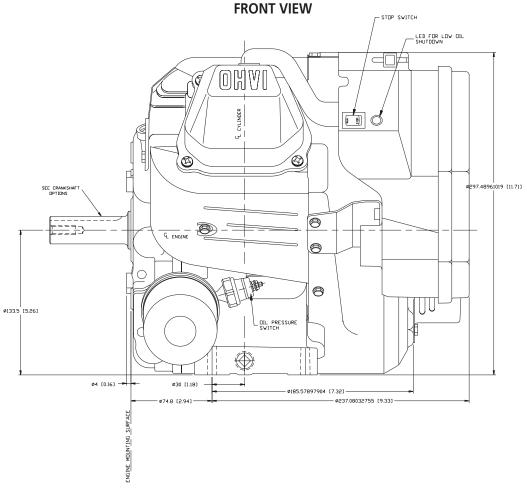
Indicates a fluid capacity.

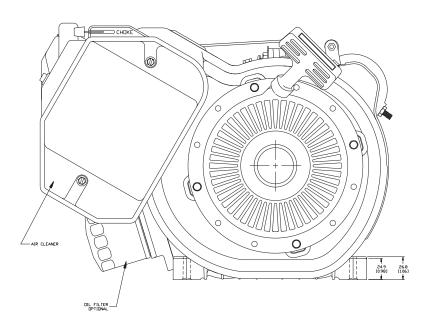

Indicates a measurement.


Indicates a torque specification.


Indicates a load specification.



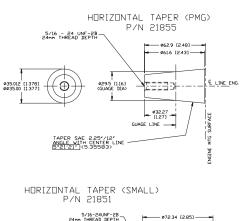

PTO SIDE VIEW

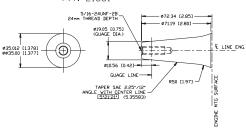

BOTTOM VIEW — MOUNTING HOLES

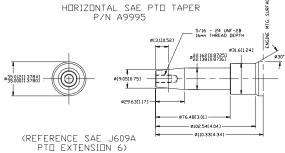
STARTER SIDE VIEW

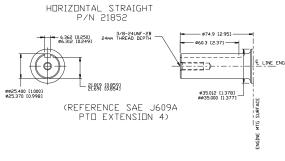
PUSH ROD GUIDE PLATE

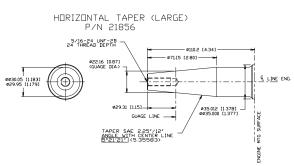
54.

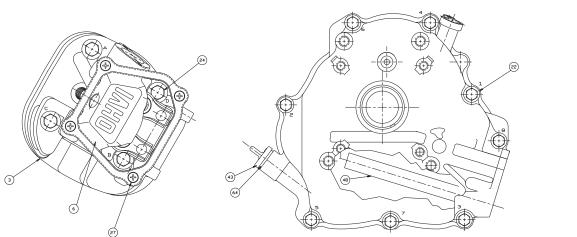

PIPE PLUG

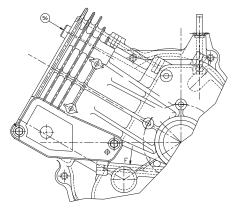

36.

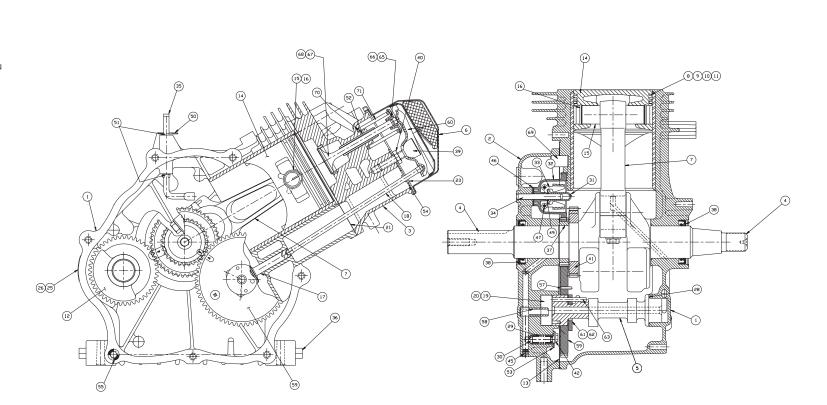

PUSH ROD

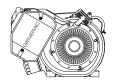

17.


PTO CRANKSHAFT OPTIONS VIEW

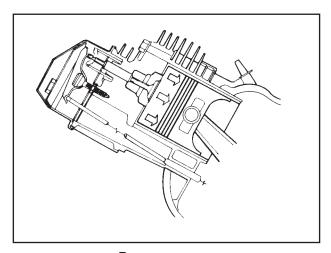

		CUTAWAY VIEWS DESCRIPTIONS	/S DE	SCRIPTIONS		
CRANKCASE	19.	OIL PUMP OUTER ROTOR	37.	37. CRANKSHAFT GEAR	55.	DOWEL PIN
CRANKCASE COVER	20.	OIL PUMP INNER ROTOR	38.	38. CRANKSHAFT OIL SEAL	56.	DOWEL PIN
ASSEMBLY	21.	CYLINDER HEAD GASKET	39.	PIVOT BALL STUD	57.	SPRING PIN
CRANKSHAFT	22.	CRANKCASE COVER BOLT	40.	JAM NUT	58.	OIL PUMP INNER ROTOR SH
CAMSHAFT	23.	ROCKER ARM COVER GASKET	41.	CRANKSHAFT GEAR	59.	CAMSHAFT GEAR
ROCKER ARM COVER	24.	CYLINDER HEAD BOLT	42.	OIL PRESSURE RELIEF SCREW	.09	ROCKER ARM
CONNECTING ROD	25.	DATA DECAL	43.	OIL FILL PLUG	61.	COMPRESSION RELIEF SPRII
PISTON RING TOP	26.	OVERLAMINATE	44.	TAPER PLUG	62.	COMPRESSION RELIEF FLYV
PISTON RING, SECOND	27.	ROCKER ARM COVER SCREW	45.	TAPER PLUG	63.	COMPRESSION RELIEF LIFT
OIL RING, RAIL	28.	SPRING WASHER	46.	GOVERNOR GEAR THRUST WASHER	64.	O-RING
OIL RING, SPACER	29.	OIL PRESSURE RELIEF VALVE SPRING	47.	47. GOVERNOR FLYWEIGHT PIN	65.	VALVE SPRING RETAINER
BALANCER	30.	OIL PRESSURE RELIEF VALVE BALL	48.	OIL PICKUP ASSEMBLY	.99	VALVE SPRING KEEPER
CRANKCASE COVER GASKET	31.	GOVERNOR SPOOL	49.	GOVERNOR RETAINER CLIP	. 79	EXHAUST VALVE
PISTON	32.	GOVERNOR GEAR	50.	GOVERNOR ARM "R" PIN	.89	INTAKE VALVE
PISTON PIN	33.	GOVERNOR FLYWEIGHT	51.	GOVERNOR ARM THRUST WASHER	.69	DOWEL PIN
SNAP RING	34.	GOVERNOR SHAFT	52.	VALVE STEM SEAL	70.	VALVE SPRING WEAR WASI
TAPPET	35.	GOVERNOR ARM	53.	OIL PRESSURE RELIEF RETAINER	71.	VALVE SPRING


FLYWEIGHT LIFT SHAFT

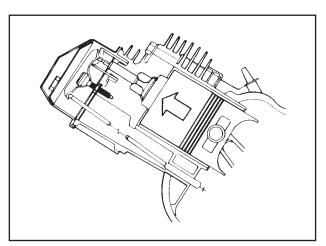

SPRING



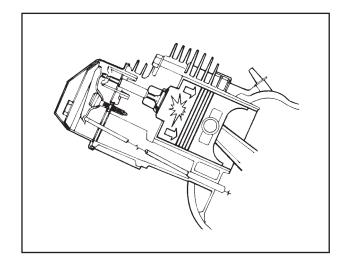
CUTAWAY VIEWS



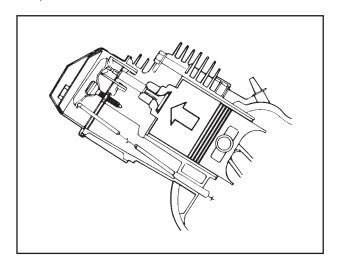
If the engine Is to run properly, four (4) events must occur in the proper sequence and at the correct time. These events are (a) intake, (b) compression, (c) ignition and power, and (d) exhaust.

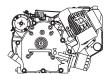

A INTAKE

The piston is travelling from top dead center (TDC) to bottom dead center (BDC). The cam has opened the intake valve. The piston's downward movement in the cylinder creates a partial vacuum In the cylinder. Air at atmospheric pressure is drawn into the cylinder through the carburetor and is mixed with fuel in the carburetor. The fuel-air mixture flows through the open intake valve into the cylinder. When the piston reaches BDC, the intake stroke is over.


B COMPRESSION

As the piston reaches bottom dead center (BDC), both the intake and exhaust valves are closed. The piston moves upward toward TDC and the fuel-air mixture is compressed. Just before the piston reaches TDC, ignition occurs.


C IGNITION AND POWER


By the time the piston reaches TDC, combustion is already in progress. The intake and exhaust valves remain closed as the expanding gases of combustion force the piston downward.

D EXHAUST

The exhaust stroke begins when the piston has reached BDC and has started its upward movement. The intake valve is closed. The exhaust valve is open to let gases escape.

PURPOSE AND SCOPE OF MANUAL

This manual contains all information normally required to service or repair the Models GN-320, GN-360 and GN-410 horizontal shaft engines. Repair procedures are carefully explained and illustrated.

LARGE FRAME ENGINES

Engine Models GN-320, GN-360 and GN-410 are designated as "large frame" engines. Some of the differences between specific engine models are as follows:

- 1. Differences in the type of crankshaft.
 - a. Some engine models are equipped with a tapered crankshaft.
 - b. Some engine models may be equipped with a 1-inch straight shaft.
- Some engine models are equipped with automatic idle control, other models are not.
- 3. Some engine models are equipped with an OPTIONAL oil filter assembly.
- 4. Some engines may be equipped with electric start, others are manual start.
- 5. Some engine models are "vertical shaft" for use in specific applications (such as recreational vehicle generators).
- 6. Some engines are "horizontal shaft" type.
- 7. Some have an LOS (Low Oil Shutdown) module.
- 8. Some have an oil fill tube.

LONG BLOCK

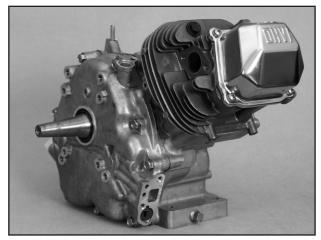
The term "long block" refers to a basic engine which does not have such items as a blower housing, air cleaner, carburetor, etc. Figure 1.1 shows a typical long block.

Figure 1.2 shows a typical complete engine, with all the parts needed to adapt the engine for a particular use. The typical complete engine shown is a horizontal shaft model, for use with AC generators.

ENGINE I.D. NUMBER/SERIAL NUMBER

The engine ID number and serial number of the engine long block can be found on a nameplate, located on the engine crankcase. (See Figure 1.3).

NOTE: Have the engine model and serial number when ordering parts. This number is located on the back of the cylinder block on the identification tag.



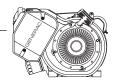

Figure 1.1 — Typical Long Block

Figure 1.2 — Typical Complete Engine

Figure 1.3. — Location of Engine I.D. and Serial Numbers

ENGINE CARE

RECOMMENDED FUELS:

Use clean, fresh, UNLEADED regular grade gasoline. Unleaded gasoline burns cleaner, extends engine life and promotes easier starting by reducing combustion chamber deposits. The use of gasohol is NOT recommended. If gasohol must be used, it should contain not more than 10 percent ethanol. If gasohol containing ethanol is used, special care is required when preparing the engine for storage (see "Storage Instructions").

- DO NOT USE GASOLINE CONTAINING METHANOL.
- DO NOT MIX OIL WITH THE GASOLINE.

DANGER! GASOLINE IS EXTREMELY FLAMMABLE AND ITS VAPORS ARE EXPLOSIVE. DO NOT PERMIT SMOKING, OPEN FLAME OR HEAT IN THE VICINITY WHILE HANDLING GASOLINE. AVOID SPILL AGE OF GASOLINE ON A HOT ENGINE. COMPLY WITH ALL LAWS PERTAINING TO THE STORAGE AND HANDLING OF GASOLINE.

RECOMMENDED ENGINE OIL:

Use a clean, high quality, detergent oil classified "For Service SC, SD, SE, SF or SG." No special additives should be used with the recommended oil. Detergent oils keep the engine cleaner and retard the formation of gum and varnish deposit.

Synthetic oil can be used in place of petroleum base oils.

During summer months (above 32F or 0C), use SAE 30 oil. SAE 10W-30 oil is an acceptable substitute.

During winter (below 32F or 0C) use SAE 5W-20 or 5W-30 oil.

DO NOT USE SAE 10W-40 OIL.

CRANKCASE OIL CAPACITY
GN-320, GN-360, GN-410 ENGINES
WITHOUT OIL FILTER CHANGE —
46 ounces (1350 ml)
WITH OIL FILTER CHANGE —

▲ 51 ounces (1500 ml)

•

CHANGE OIL FILTER:

Replace oil filter with every oil change. Before installing new oil filter, put a light coat of clean oil on rubber o-ring on filter base. Screw filter on by hand until o-ring touches filter adapter base, then tighten 3/4 turn. Check for leaks after starting engine.

Check engine oil level each time the equipment is used. When checking oil level, make sure the equipment is level.

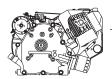
Change oil after the first eight hours of operation on a new engine. Thereafter, change oil and filter every 50 hours of operation. Change oil every 25 hours if operating under extremely dusty or dirty conditions, or in very hot weather.

NOTE: Engine may be equipped with automatic low oil shutdown capability. If so equipped, it will not start when oil level is low. See Section 12, "Lubrication."

STORAGE INSTRUCTIONS

The engine should be started at least once every seven days and allowed to run for at least 30 minutes. If this cannot be done and the engine is to remain unused longer than 30 days, it must be prepared for storage.

DANGER! NEVER STORE THE ENGINE WITH FUEL IN TANK INDOORS OR IN ANY ENCLOSED, POORLY VENTILATED AREA WHERE FUEL VAPORS MIGHT REACH AN OPEN FLAME (AS ON A FURNACE, WATER HEATER, DRYER, ETC.). FIRE OR AN EXPLOSION COULD RESULT.


To prepare an engine for storage, proceed as follows:

- 1. Run the engine for about five minutes to warm it up.
 - a. If gasohol was used, drain the fuel tank, then run the engine until it shuts down due to lack of fuel.
 - b. Use of a good fuel stabilizer will prevent gum deposits from forming in the engine fuel system.
- 2. While engine is still warm from running, drain oil from crankcase and refill with new oil.
- 3. Remove the spark plug and pour about 1/2 ounce (15ml) of clean, fresh engine oil into cylinder. Crank the engine over slowly to distribute the oil. Then, install the spark plug but do not connect the spark plug wire.
- 4. Clean dirt, oil, grease, etc., from the engine.
- 5. Store the engine in a clean, dry area.

TUNE-UP PROCEDURE

Following is a minor tune-up procedure. When the procedure has been completed, either the engine will run properly or further repairs may be required.

- 1. Service or replace engine air cleaner as needed.
- 2.Check level and condition of oil. Add or change oil as necessary.
- 3. Remove the blower housing. Clean dirt from intake screen, head and cylinder cooling fins. Also, remove dirt from carburetor and governor lever(s) and linkage.
- 4. Clean fuel tank, fuel filter(s) and fuel lines.
- 5. Replace any damaged governor springs.
- 6. If required, adjust the carburetor and governor.

- 7. Replace the spark plug. Use a Champion RC12YC (or equivalent) spark plug.
 - a. Set spark plug gap to 0.030 inch (0.76mm).
 - b. Install new plug, tighten to 13 ft-lbs (156 in-lbs).
 - c. If torque wrench is not available, tighten plug with fingers. Then, tighten NEW plug 1/2 turn further; or USED plug 1/4 turn further.
- 8. Check that ignition wires are free of breaks and abrasions and are properly routed.
- 9. Install the blower housing.
- 10. Run engine and adjust engine speed.

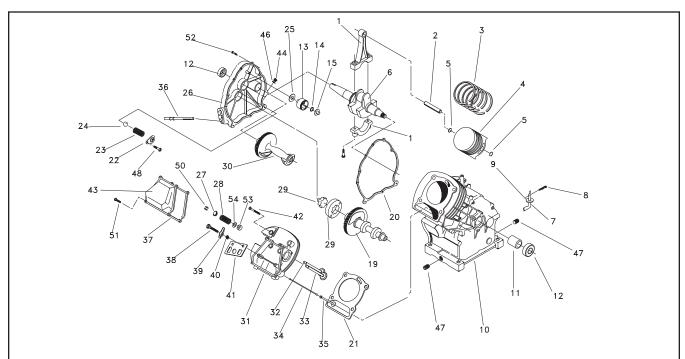
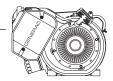



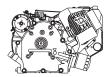
Figure 1.4 — Exploded View — Typical Horizontal Shaft Long Block

ITEM	DESCRIPTION	QTY	ITEM	DESCRIPTION	QTY
1 2 3 4 5 6 7 8 9 10 11 12 13 14	Connecting Rod Assembly Piston Pin Piston Ring Set Piston Snap Ring Crankshaft Assembly Governor Arm Governor Arm "R" Pin Governor Arm Washer Crankcase Assembly Sleeve Bearing Crankshaft Oil Seal Governor Gear Assembly Governor Gear Retainer Governor Spool	QTY 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1	29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	Gerotor Set Balancer Cylinder Head Assembly Exhaust Valve Intake Valve Push Rod Tappet Oil Pick-up Assembly Rocker Cover Gasket Pivot Ball Stud Rocker Arm Rocker Arm Rocker Arm Jam Nut Push Rod Guide Plate Cylinder Head Bolt Rocker Cover/Breather Assembly	QTY 1 1 1 1 2 2 1 1 2 2 1 4 1 1
14	Governor Gear Retainer	1 1 1 1 1 1 1 1 1 1 1 2 2	42	Cylinder Head Bolt	1 1 1 1 2 1 4 4 8 1 2

OVERSIZE PARTS

GENERAL:

At the time this Manual was published, oversize pistons, rings, valves, etc., were not available. Worn or damaged parts must be replaced.


OVERSIZE PISTONS AND RINGS:

Oversize pistons and rings are not available at this time. The engine cylinder cannot be rebored to an oversize dimension. If the cylinder is worn excessively or damaged, the crankcase must be replaced. A standard size piston and rings can then be used.

OVERSIZE VALVES:

Oversize valves are not available at this time. Valve guides cannot be rebored to an oversize dimension. If valve guides are worn or damaged, the cylinder head must be replaced. Standard size valves can then be used. Valve guides cannot be replaced.

NOTE: Always use original GENERAC® replacement parts.

AIR CLEANER

SERVICING:

The engine will not run properly and may be damaged if it is run with a dirty air cleaner.

Clean or replace the paper filter every 25 hours of operation or once annually, whichever occurs first. Clean or replace the paper filter more often if operating in extremely dusty or dirty conditions.

Clean or replace the foam pre-cleaner every 25 hours of operation; more frequently under dirty or dusty conditions.

FOAM PRE-CLEANER:

To clean or replace the foam pre-cleaner:

- Remove the air cleaner cover, then remove the foam precleaner.
- 2. Wash the foam pre-cleaner in soapy water.
- Squeeze the pre-cleaner dry with a clean cloth. DO NOT TWIST.

NOTE: If the pre-cleaner is still dirty after washing and drying it, replace it with a new filter

- 4. Apply enough clean engine oil to saturate the pre-cleaner.
- 5. Wrap the pre-cleaner in a clean dry cloth and squeeze out excess oil. DO NOT TWIST. Set the pre-cleaner aside.

Figure 2.1. Typical Air Cleaner

PAPER FILTER:

- 1. Remove the air cleaner cover.
- 2. Remove the foam pre-cleaner and service it, if necessary.
- 3. Remove the paper filter.

- 4. Clean the paper filter by tapping gently on a flat surface. If it is very dirty, replace it.
- 5. Clean the air cleaner cover. Then, install the foam precleaner into the cover.
- 6. Insert the paper filter into the cover so it holds the precleaner in place.
- 7. Assemble the pre-cleaner, paper filter and cover to the air cleaner base.

AIR CLEANER BOX REMOVAL:

If the air cleaner box must be removed for further engine disassembly, do the following (see Figure 2.2):

- 1. Remove the air cleaner cover.
- 2. Remove the foam pre-cleaner and paper filter.
- 3. Remove the choke knob.
- 4. Remove the breather hose.
- 5. Remove the two nuts and corresponding washers from the carburetor mounting bolts.
- 6. Remove the two capscrews and corresponding washers from the lower part of the air cleaner box.

NOTE: The carburetor will be loose after removal of the air cleaner box. Do not allow the carburetor to drop.

Note: Be careful not to stretch or bind the wires connected to the Low Oil Indicator and Start/Stop switch.

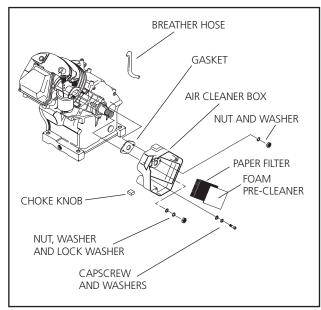
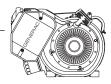



Figure 2.2 — Exploded View of Air Cleaner Box

AIR CLEANER BOX INSTALLATION:

Install the air cleaner box to the engine and carburetor as follows:

1. Using a new gasket, place the air cleaner box on the carburetor, line up the holes and install the two nuts and corresponding washers to the carburetor mounting bolts (see Figure 2.2). Refer to "Torque Specifications" on page 59 for proper torque.

Note: The nut on the right side (toward the rear of the engine) uses only a flat washer. The nut on the left side (toward the front of the engine) uses a lock washer and a flat washer (see Figure 2.2).

- 2. Install the two capscrews in the lower part of the air cleaner box (see Figure 2.2). Refer to Torque Specifications on page 61 for proper torque.
- 3. Reinstall the breather hose.
- 4. Reinstall the choke knob.
- 5. Install the filters and cover as stated in the preceding sections on filter maintenance.

CARBURETION

GENERAL:

Proper engine performance depends on the carburetion system. The use of clean, fresh fuel and a well maintained air cleaner is extremely important to engine operation, as well as engine reliability and power.

COMMON CARBURETOR PROBLEMS:

Most causes of carburetor problems are related to the use of stale, gummy fuel and the ingestion of dirt. Prior to servicing any carburetor, be sure to check for evidence of these conditions.

Gasoline that is left in the system for long periods can form gum or varnish deposits that will adversely affect carburetor operation.

NOTE: Use of a good fuel stabilizer will minimize the formation of gum deposits during storage. Add the stabilizer to the gasoline in the fuel tank or in the storage container. Follow the mix ratio recommended on the stabilizer container. After adding the stabilizer to the engine fuel tank, run the engine for about ten (10) minutes so it will enter the carburetor. A brand name stabilizer can be purchased in most automotive repair facilities or in lawn and garden centers.

SERVICE TIP:

Carefully inspect the carburetor choke and throttle shafts for wear. Grasp each shaft and attempt to move it horizontally and vertically. Maximum allowable end play for choke and throttle shafts is 0.004 inch (0.1mm). Replace if excessive play is evident.

CARBURETOR REMOVAL:

- 1. Remove the air cleaner box as outlined in "AIR CLEANER BOX REMOVAL."
- 2. Disconnect the governor rod and anti-lash spring from the throttle arm of the carburetor.
- 3. Slide the carburetor off of its mounting bolts.

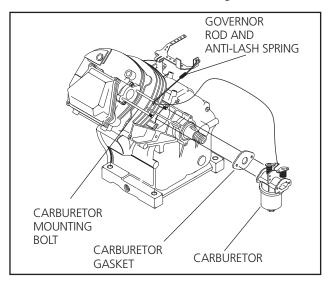
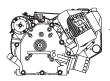



Figure 2.3 — Removal of Carburetor

CARBURETOR DISASSEMBLY:

To disassemble the carburetor, proceed as follows (See Figure 2.4):

- 1. Remove the FLOAT BOWL NUT (Item 1) and the FIBER WASHER (Item 2). Then remove the FLOAT BOWL (Item 3).
- 2. Remove the FLOAT PIN (Item 4). Then remove the FLOAT (Item 5), and FUEL INLET VALVE (Item 6).
- 3. Remove the IDLE SPEED STOP SCREW (Item 16) along with its SPRING (Item 17).
- 4. Rotate the THROTTLE PLATE (Item 8) to it's closed position and remove two THROTTLE PLATE SCREWS (Item 7).

- 5. Rotate the CHOKE PLATE (Item 14) to its closed position and remove the CHOKE RETAINER SPRING (Item 15).
- 6. Remove the CHOKE SHAFT (Item 12) and the CHOKE SHAFT SEAL (Item 13).
- 7. Remove the THROTTLE SHAFT (Item 11) and the THROTTLE SHAFT SEAL (Item 10).

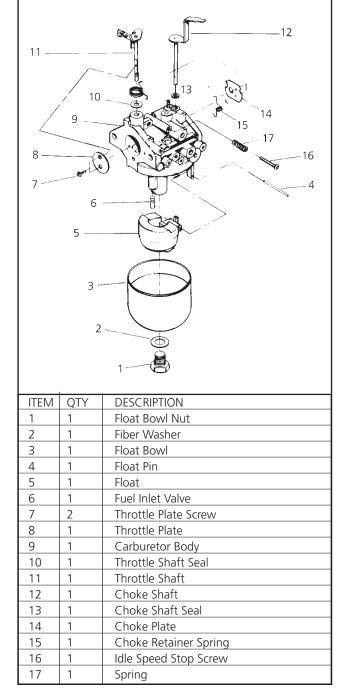


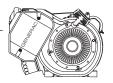
Figure 2.4 — Exploded View of Carburetor

CARBURETOR CLEANING AND INSPECTION:

- Separate out all nonmetallic parts. Then, clean metallic parts with solvent or commercial carburetor cleaner. DO NOT PERMIT NONMETALLIC PARTS TO CONTACT SOL-VENT OR CLEANER.
- Inspect the THROTTLE SHAFT (Item 11) Replace if worn or damaged.
- 3. Inspect the CHOKE SHAFT (Item 12) Replace if worn or damaged.
- 4. Inspect the FLOAT BOWL (Item 3). It must be free of dirt and corrosion.
- 5. Inspect the FLOAT (Item 5) Replace if damaged.
- 6. After all metallic parts have been cleaned, blow out carburetor passages with compressed air.

Generac recognizes that there are spray type carburetor cleaners on the market, however Generac does not authorize the use of carburetor cleaners. Also, Generac does not recommend soaking a carburetor in any cleaners since the carburetor might be damaged.

CARBURETOR REASSEMBLY:


Reassemble the carburetor in the reverse order of disassembly. The following rules apply:

- 1. Blow metallic parts dry with compressed air.
- 2. A notch on the FUEL INLET VALVE mates with the FLOAT (See Figure 2.4).
- 3. The FLOAT SETTING is FIXED and NONADJUSTABLE.
- Before tightening the FLOAT BOWL NUT (Item 1), make sure the FLOAT BOWL is properly aligned with the GASKET and the CARBURETOR BODY.

CARBURETOR INSTALLATION:

Using a new gasket, reinstall the carburetor as follows:

- 1. Slide the new carburetor gasket over the carburetor mounting bolts followed by the carburetor.
- 2. Connect the governor rod and anti-lash spring.
- 3. Install the air cleaner box, filters and air cleaner cover as described in "AIR CLEANER BOX INSTALLATION."

CARBURETOR ADJUSTMENT

INITIAL ADJUSTMENTS:

(See Figures 2.4 and 2.5)

- 1. The IDLE SPEED STOP SCREW is located at top of the carburetor and contacts the THROTTLE SHAFT. After reassembling the carburetor, complete an initial adjustment of the STOP SCREW as follows:
 - a. Close the THROTTLE PLATE.
 - b. Hold the throttle plate in its closed position and back out the idle speed stop screw.
 - c. Turn the idle speed stop screw until it just contacts the stop tang of the throttle shaft. Then turn the idle speed stop screw in one turn further.

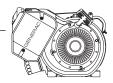
NOTE: Final adjustment of idle speed can be accomplished with the engine running. Engines equipped with optional automatic idle control require a special procedure for idle speed adjustment. See Section 4, "Optional Idle Control."

NOTE: The carburetor is equipped with a fixed main jet, which requires no adjustment.

FINAL ADJUSTMENT:

The following instructions apply to engines NOT equipped with automatic idle control. If the unit has an automatic idle control, refer to the Section 4, "Optional Idle Control."

If the engine is used to drive an AC generator set, use an AC frequency meter to measure engine speed/frequency. Connect the AC frequency meter across one of the generator's AC output receptacles or across the generator's AC power winding output leads. Read the AC output frequency in HERTZ (cycles per second).


If the engine is used in some other application (pressure washer, pump, air compressor, etc.), use a tachometer to read the engine rpm.

- 1. Start the engine and allow a sufficient warm-up period.
- 2. Hold the carburetor throttle lever against the idle speed stop screw, then turn the idle speed stop screw until the correct idle speed is obtained.
 - a. If the driven unit is an AC generator and an AC frequency meter is used, the correct idle speed is between 62-63 Hertz. (3720-3780 rpm).
 - b. If the unit is not a generator, adjust the idle speed stop screw to obtain about 3750 rpm.

Figure 2.5 — Idle Speed Stop Screw

GOVERNOR OPERATION

- 1. The GOVERNOR SPRING tends to pull the LEVER and GOVERNOR ROD toward the "INC. RPM" direction.
- 2. As engine speed increases, centripetal force acts on the FLY-WEIGHT. When FLYWEIGHT centripetal force exceeds SPRING force, the governor SPOOL is moved axially by FLY-WEIGHT force. This causes the GOVERNOR ARM to rotate, which then moves the LEVER and GOVERNOR ROD toward a "DEC. RPM" direction.
- As engine speed decreases, a point is reached where governor SPRING force is greater than FLYWEIGHT centripetal force. SPRING force then moves the LEVER and GOVERNOR ROD toward "INC. RPM."
- 4. Governor action consists of a series of small rpm overshoots and undershoots, as SPRING force increases rpm and FLY-WEIGHT centripetal force decreases rpm.
- 5. The point at which SPRING tension and FLYWEIGHT force are equal is the governed speed of the engine.

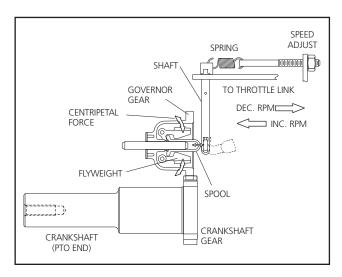


Figure 3.1 — Governor Operating Diagram

GOVERNOR INTERNAL PARTS

See Figure 3.2. A governor gear shaft is pressed into a bore in the engine crankcase cover. Internal governor components include (a) a THRUST WASHER, (b) GOVERNOR GEAR ASSEMBLY, (c) SNAP RING, (d) GOVERNOR SPOOL, and (e) GOVERNOR ARM. A lock pin and washer retain the governor arm in the crankcase cover.

The governor gear assembly houses the governor flyweights.

Flyweight movement causes the spool to move axially. In turn, axial movement of the spool results in rotation of the governor arm.

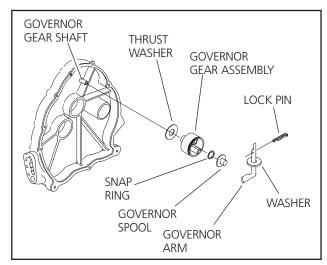


Figure 3.2 — Internal Governor Parts

GOVERNOR EXTERNAL PARTS

WITHOUT AUTOMATIC IDLE CONTROL:

External governor parts for units without automatic idle control are shown in Figure 3.3. Parts include (a) a GOVERNOR LEVER, (b) a GOVERNOR ROD, (c) ANTI-LASH SPRING, (d) a SPEED ADJUST BOLT, (e) a SPEED ADJUST NUT, and (f) a GOVERNOR SPRING.

The governor lever is clamped to the governor arm, so that arm rotation is imparted to the lever. The governor rod connects to the governor lever at one end and to the carburetor throttle arm at it's other end. Governor spring tension is adjustable by means of the speed adjust bolt and nut.

Engine speed can be adjusted by changing the tension of the governor spring. Governor spring tension can be changed by turning a locknut on the governor adjusting bolt.

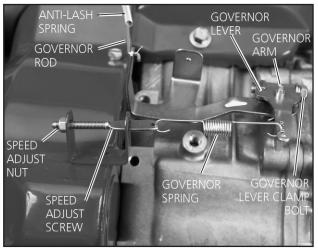
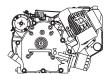



Figure 3.3 — External Governor Parts (Units without Idle Control)

WITH AUTOMATIC IDLE CONTROL:

Models equipped with automatic idle control (Section 4) have the same external governor parts as shown in Figure 3.3 with the addition of an idle control solenoid as shown in Figure 3.4.

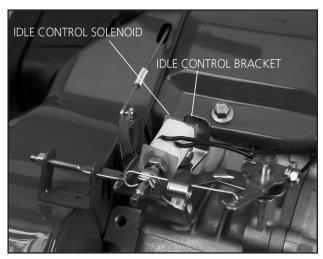


Figure 3.4 — External Governor Parts (Units with Idle Control)

REMOVAL OF GOVERNOR EXTERNAL PARTS:

Before any covers and shrouds can be removed from the engine, the governor external parts must be removed. Refer to Figures 3.3 and 3.4 for identification of the parts described in the following procedure.

- 1. Remove the CAPSCREW from the IDLE CONTROL BRACKET if equipped with automatic idle control (Figure 3.4).
- 2. Loosen the GOVERNOR LEVER CLAMP BOLT (Figure 3.3).
- 3. Loosen SPEED ADJUST NUT until the GOVERNOR SPRING can be removed (Figure 3.3).
- 4. Lift the GOVERNOR LEVER from the GOVERNOR ARM (Figure 3.3).
- 5. Disconnect the GOVERNOR ROD and ANTI-LASH SPRING from the GOVERNOR LEVER (Figure 3.3).

Set the governor external parts aside.

INSTALLATION OF GOVERNOR EXTERNAL PARTS:

AFTER the installation of the engine shrouds and covers, reinstall the governor external parts as follows (refer to Figure 3.3):

- 1. Reattach the GOVERNOR ROD and ANTI-LASH SPRING to the GOVERNOR LEVER.
- 2. Slide the GOVERNOR LEVER onto the GOVERNOR ARM.
- 3. Tighten the GOVERNOR LEVER CLAMP BOLT.

- 4. Reinstall the GOVERNOR SPRING to the GOVERNOR LEVER and SPEED ADJUST SCREW, then tighten the SPEED ADJUST NUT accordingly.
- 5. Reinstall the CAPSCREW into the IDLE CONTROL BRACKET if equipped with automatic idle control (Figure 3.4). See BLOWER HOUSING SCREW under "TORQUE SPECIFICATIONS," page 61, for proper tightness.

For proper governor adjustment, refer to "GOVERNOR ADJUSTMENT" on this page.

GOVERNOR GEAR SHAFT REPLACEMENT

CAUTION! DO NOT TWIST THE GEAR SHAFT WITH A VISE GRIP OR ANY OTHER TOOL. THIS COULD RESULT IN ENLARGEMENT OF THE SHAFT BOSS.

INSPECTION:

If the governor gear shaft is scored, damaged or worn, it should be replaced.

GOVERNOR GEAR SHAFT DIAMETER GN-320, GN-360, GN-410 0.236-0.237 inch (6.004-6.012mm)

REMOVAL:

If it becomes necessary to replace the governor gear shaft, remove the crankcase cover (See Section 11). Use care to avoid damage to the shaft boss area of the crankcase cover. Clamp the shaft in a vise, then tap the flange with a wooden or plastic mallet to remove the shaft.

INSTALLATION:

Start the new shaft into the shaft boss by tapping lightly with a soft mallet. Add red Loctite[®] to the shaft. Then, use a press or vise to press the shaft into the boss. The shaft is properly positioned when its end is just flush with the external boss of the crankcase cover. Be sure to wipe away any excess Loctite[®] from the flange.

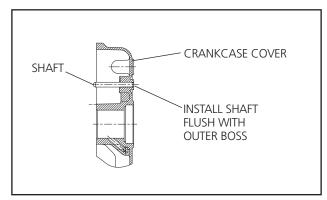
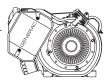



Figure 3.5 — Governor Gear Shaft

LINKAGE INSTALLATION

Differences may exist between governor/carburetor linkages, depending on the type of equipment on which the engine is used.

The best method for installation of linkage and springs is to record the attachment points prior to disassembly. Reinstall the governor rod, link and spring(s) in the same manner.

In the typical connection system shown in Figure 3.3 (page 18), the governor rod connects to the governor lever at one end; to the carburetor throttle arm at the opposite end.

In some applications, an anti-lash spring also will be connected at these two points.

GOVERNOR ADJUSTMENT

INITIAL ADJUSTMENT:

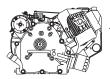
Before starting the engine, complete an initial adjustment of th governor as follows:

- 1. Loosen the GOVERNOR LEVER CLAMP BOLT (see Figure 3.3).
- 2. While holding the GOVERNOR LEVER at its full "INC. RPM" position, rotate the GOVERNOR ARM clockwise as far as it will go. Then, tighten the GOVERNOR LEVER CLAMP BOLT.

TORQUE SPECIFICATION GOVERNOR LEVER CLAMP BOLT 70 inch-pounds

- 3. For adjustable carburetors, turn the carburetor IDLE JET in (clockwise) until it just bottoms. DO NOT FORCE. Then, back the IDLE JET out (counterclockwise) about 1-1/2 turns (see Figure 3.6).
- 4. Turn the MAIN JET (Figure 3.6) in (clockwise) until it just bottoms. DO NOT FORCE. Then, back the MAIN JET out (counterclockwise) about 1-1/2 turns.

RUNNING ADJUSTMENT:


After completing the INITIAL ADJUSTMENT, final adjustment can be accomplished with the engine running. Proceed as follows:

NOTE: For AC generator applications, disconnect or turn OFF all electrical loads. For nongenerator applications, turn OFF the equipment being powered. Initial checks and adjustments will be accomplished with engine at no-load.

- 1. If so equipped, set the idle control switch to OFF.
- 2. Start the engine, let it warm up and stabilize at no-load.
- 3. For AC generator applications, connect an AC frequency meter to one of the generator's AC output receptacles.
 - a. If the generator is rated 60 Hertz, the no-load AC frequency reading should be 61.5-63.5 Hertz.
 - b. If the generator is rated 50 Hertz, the no-load AC frequency should be 50.5-51.5 Hertz.
- 4. For nongenerator applications (pumps, pressure washers, etc.), refer to the product DATA PLATE for rated engine speed. Use a tachometer to read engine speed.

NOTE: Several types of inexpensive tachometers are commercially available.

- 5. If the frequency (or rpm) reading is incorrect, turn the SPEED ADJUST NUT (Figure 3.3) on the governor until frequency or rpm is within limits.
- 6. If frequency or rpm is unstable, turn the IDLE SPEED SCREW on carburetor until engine stabilizes. DO NOT TURN THE IDLE SPEED STOP SCREW IN FURTHER THAN NECES-SARY. Fine tune this adjustment after the engine has warmed up and stabilized. Adjust it 1/8 turn at a time.

- 7. When the no-load frequency or rpm is correct, apply a load to the engine.
 - a. For AC generator applications, connect electrical loads as close as possible to the unit's rated wattage/amperage capacity.
 - b. For nongenerator applications, turn on the equipment being powered by the engine.
- 8. With a load applied to the engine, adjust the carburetor as follows:
 - a. <u>CARBURETOR WITH FIXED MAIN JET</u>: Slowly adjust the IDLE SPEED STOP SCREW to obtain best operation and highest rpm under load (see Figure 3.6). DO NOT EXCEED RPM SPECIFICATION.
 - b. <u>CARBURETOR WITH ADJUSTABLE MAIN JET:</u> Adjust the carburetor as follows:
 - (1) Slowly turn the MAIN JET counterclockwise (richer) until rpm or frequency starts to drop off.
 - (2) Turn the MAIN JET clockwise (leaner) until rpm or frequency again starts to decrease.
 - (3) Turn the MAIN JET counterclockwise (richer) until the best and most stable frequency or rpm is obtained.

9. Turn off all loads and check the no-load governor setting. Readjust governor no-load speed, if necessary.

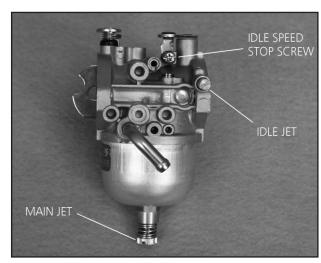
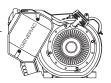



Figure 3.6 — Adjustable Carburetor

GENERAL

Some applications, such as AC generators, may be equipped with an automatic idle control system. This type of system provides greatly improved fuel economy by running the engine at a high governed speed only when electrical loads are connected to the generator. When the electrical loads are disconnected, engine speed will automatically be reduced to an idle.

OPERATING INSTRUCTIONS

BEFORE START UP

CAUTION! Before cranking and starting the engine, always set the idle control switch to OFF. Set the switch to its ON position only after the engine has stabilized at high governed speed (see Figure 4.1).

ENGINE RUNNING:

To have the engine run at high governed speed only when electrical loads are connected and turned on, set the idle control switch to ON. The engine will decelerate to idle speed when loads are disconnected or turned off. If you wish to have the engine run at high governed speed at all times (with or without loads connected), set the idle control switch to OFF.

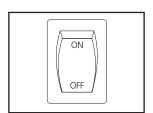


Figure 4.1 — Idle Control Switch

CIRCUIT OPERATION

- 1. With Idle Control switch set to ON:
 - a. AC power is delivered from the generator's AC power windings to a circuit board, for operation of the circuit board.
 - b. With electrical loads connected to the generator, current will flow through the primary windings of a sensing transformer. A proportional voltage and current will then be induced into the transformer's secondary windings.
 - c. Current from the transformer secondary windings is delivered to the circuit board. Circuit board action then opens the circuit to an idle control solenoid.
 - d. The idle control solenoid de-energizes and engine speed is established by the engine governor.
 - e. When electrical loads are disconnected or turned off, current flow through the transformer primary windings will terminate. Voltage and current cannot be induced into the transformer secondary windings and the solenoid energizes.
 - f. Zero current flow of the transformer secondary windings is sensed by the circuit board. The circuit board then closes the circuit to the idle control solenoid.
 - g. The energized solenoid pulls the carburetor throttle arm against its idle speed stop screw. The engine decelerates to idle speed, about 2280-2400 rpm (38-40 Hertz).
- 2. Idle control switch set to OFF:
 - a. AC power is not available to the circuit board. The idle control solenoid will then remain de-energized at all times.
 - b. The engine will run at high governed speed.

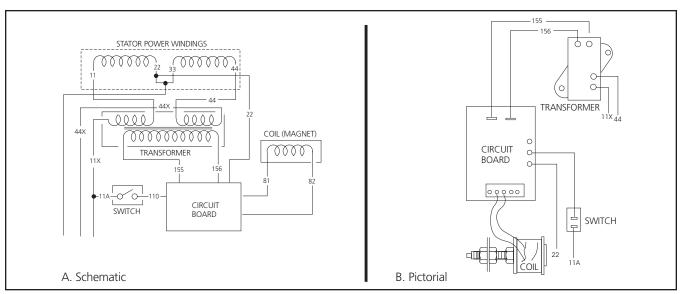
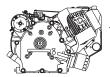



Figure 4.2 — Idle Control System (Typical AC Generator)

IDLE CONTROL ADJUSTMENT

GENERAL:

Idle speed will be correct when (a) the idle control solenoid is positioned to maintain an idle speed equal to about 1500-2100 rpm (25-35 Hertz), and (b) when the carburetor idle speed stop screw is set to maintain an idle speed of approximately 2280-2400 rpm (38-40 Hertz). Proper adjustment consists of first positioning the idle control solenoid to obtain an idle speed of 1500-2100 rpm. Fine adjustment can then be obtained by setting the idle speed stop screw for an idle speed of 2280-2400 rpm (38-40 Hertz).

INITIAL ADJUSTMENT:

- 1. Set the idle control switch to OFF.
- 2. Unplug all electrical loads from the generator.
- 3. Connect an AC frequency meter into one of the generators power receptacles.
- 4. Crank and start the engine as outlined in the appropriate owner's manual.
 - a. For units rated 60 Hertz, the frequency meter should read about 3,690-3,810 rpm (high governed speed). This is about 61.5-63.5 Hertz.
 - b. For units rated 50 Hertz, the meter should read 3,030-3,090 rpm (50.5-51.5 Hertz).
- 5. Let the engine stabilize and warm up.
- 6. Set the idle control switch to ON. The idle control solenoid should energize, and engine speed should decelerate to idle speed.
- 7. If necessary, back the carburetor's idle speed stop screw out so that governor lever travel is limited by the solenoid and not by the idle stop screw.
 - a. Check the frequency meter reading.
 - b. Meter should indicate about 1,500- 2,100 rpm (25-35 Hertz).
 - c. If reading is not within the stated range, adjustment of the idle control solenoid is required.
- 8. To adjust the idle control solenoid, proceed as follows:
 - a. Loosen the solenoid JAM NUT, then turn the solenoid BOLT clockwise (faster) or counterclockwise (slower).
 - b. When engine speed is 1500-2100 rpm (25-35 Hertz), hold that setting and tighten the solenoid JAM NUT.
 - c. When JAM NUT is tight, check that engine speed is still 1,500-2,100 rpm (25-35 Hertz).

FINAL ADJUSTMENT:

On the carburetor, turn the idle speed stop screw clockwise (faster speed) until engine speed increases to 2,280-2,400 rpm (38-40 Hertz) (see Figure 4.4).

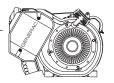

NOTE: Idle speeds less than about 38 Hertz could cause the engine to stall when loads are suddenly applied.

Figure 4.3 — Initial Adjustment Points

Figure 4.4 — Final Adjustment Point

GENERAL

The rewind starter used on most GN series engines is a manual starter that uses a spring to rewind the starter rope after it has been pulled. Pulling the rope winds up a clock-type spiral spring in the starter housing. When the rope is released, the spring unwinds and causes the rope to wind around the pulley.

When the rope is pulled outward and away from the engine, spring-loaded "starter dogs" engage the pulley, and the engine is cranked.

When the rope is allowed to return, the starter dogs do not engage the pulley.

RECOIL ASSEMBLY REMOVAL

The rewind starter assembly is retained to the engine blower housing by screws and lock washers (see Figure 5.1). Remove the screws and lock washers, then remove the complete starter rewind assembly.

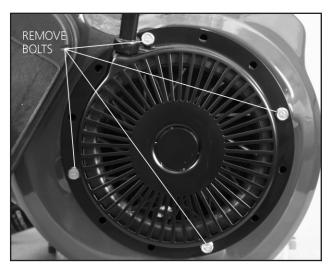


Figure 5.1 — Recoil Assembly Removal

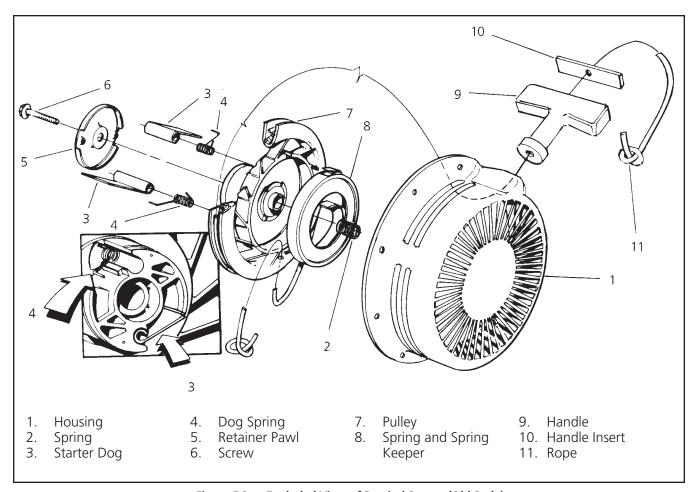
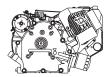



Figure 5.2 — Exploded View of Rewind Starter (Old Style)

DISASSEMBLY (OLD STYLE)

- 1. Pry up the HANDLE INSERT, to expose knot in ROPE (see Figure 5.2).
- 2. Untie knot in ROPE. Remove HANDLE INSERT and HANDLE.
- 3. Slowly release spring tension on the PULLEY, after the ROPE has been drawn through the HANDLE.
- 4. Remove the SCREW. Then, remove the RETAINER PAWL, STARTER DOGS, DOG SPRINGS, and SPRING.
- 5. Lift out the PULLEY.

REASSEMBLY

- 1. Place SPRING and SPRING KEEPER into position, turn to lock into position (see Figure 5.2). The spring should be lightly coated with grease.
- 2. Place the PULLEY, along with SPRING and SPRING KEEPER, into the HOUSING. Install SPRING, STARTER DOGS and DOG SPRINGS.
- 3. Install RETAINER PAWL and SCREW.

TORQUE SPECIFICATION RETAINER PAWL SCREW 84 inch-pounds

- 4. Wind the PULLEY counterclockwise until tight. Then, allow it to unwind until the hole in the PULLEY lines up with the eyelet in the HOUSING.
- 5. Pull the ROPE up through the eyelet in the HOUSING, then through the HANDLE and HANDLE INSERT. Tie a left-hand knot in the rope.
- 6. Install the HANDLE INSERT into the HANDLE.
- 7. Test the starter for proper operation.

TORQUE SPECIFICATION
CAPSCREWS ON REWIND TO BLOWER COVER
84 inch-pounds

DISASSEMBLY (NEW STYLE)

Disassembly of new style rewind starter is not cost effective, except for ROPE or HANDLE replacement (see Figure 5.3)

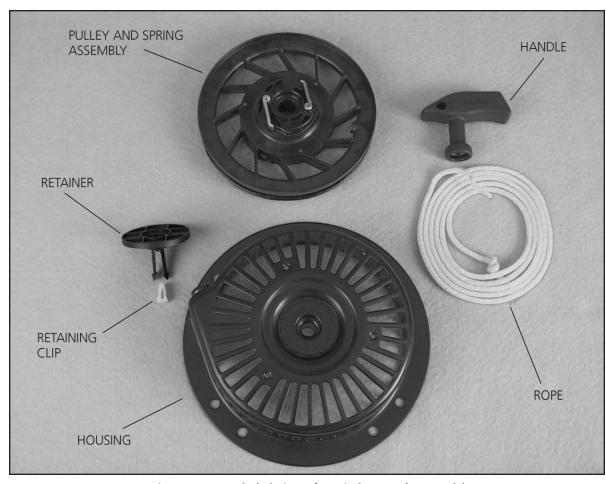
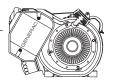



Figure 5.3 — Exploded View of Rewind Starter (New Style)

INTRODUCTION

Some GN series engine applications may be equipped with a 12-volt DC electric cranking system. Such a system converts electrical energy from a battery into mechanical energy at the starter motor, for the purpose of turning the engine over for starting.

Generally, two types of cranking systems are used in GN series engine applications. These are (a) the starter contactor system and (b) the heavy duty cranking switch system.

NOTE: Cranking systems discussed in this manual are typical systems. The actual cranking system used in specific applications may differ. Refer to the wiring diagram and/or electrical schematic in the Owner's Manual for specific applications.

NOTE: Vertical crankshaft engines used in recreational vehicle applications are equipped with a cranking and starting system that is controlled by a solid-state circuit board. This system is a "starter contactor" type, with the starter contactor energized by circuit board action. For instructions and information order "DIAGNOSTIC REPAIR MANUAL — RECREATIONAL VEHICLE GENERATORS" (Generac Part No. 94468).

STARTER CONTACTOR SYSTEM

When the start-stop switch is held at START, battery current flows through the STARTER CONTACTOR coil and to ground via the switch. The starter contactor energizes, its contacts close, and battery output is delivered to the starter motor. The motor energizes, and the engine is cranked (Figure 6.1).

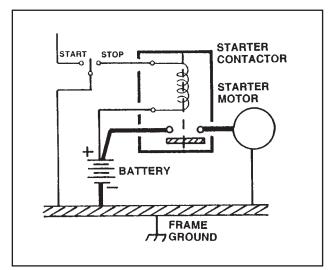


Figure 6.1— Schematic of Typical Starter Contactor System

HEAVY DUTY SWITCH SYSTEM

The heavy duty switch contacts are closed manually to deliver battery voltage to the starter motor.

STARTER MOTOR OPERATING PRINCIPLES

Closure of the circuit to the starter motor allows battery current to flow through a commutator, to the loops of wire in the armature, and back to the battery. The interaction of the magnetic fields causes the armature to revolve.

The armature rotates at a relatively high speed to provide sufficient torque to crank the engine. The required engine cranking speed is relatively slow, so the starter motor is equipped with a small drive pinion that meshes with the teeth of a flywheel ring gear to crank the engine. The large ring gear and the small starter pinion gear results in a gear reduction that can vary in ratio up to 19-to-1. This reduction allows the starter to rotate at high speeds while cranking the engine at low speeds.

When the engine starts, its speed increases quickly. For example, if the engine reaches 100 rpm and the starter pinion remains meshed with the ring gear, the starter armature would spin at about 1,900 rpm (19-to-1 ratio). To prevent damage to the armature, a "Bendix Drive" mechanism is used to disengage the starter pinion from the ring gear when the engine has started.

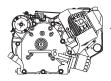
THE BENDIX DRIVE

When the field coils of the starter drive are energized, the armature starts to turn. A loose fitting sleeve inside the pinion gear is turned with the armature. This sleeve has large spiral threads on its surface that match the pinion gear's internal threads. The sleeve turns with the armature, and the pinion gear rotates on the threads to move outward on the sleeve. Outward movement of the pinion gear causes that gear to mesh with the flywheel ring gear. The pinion hits a stop on the sleeve, and the pinion turns the ring gear and engine. On start-up, the engine turns faster than the armature. This causes the pinion to spin back on the spiral threads of the sleeve and out of engagement with the ring gear.

STARTER MOTOR REPAIRS

If the starter motor is defective, it should be removed and replaced. Disassembly and repair of the motor is not cost effective.

STARTER MOTOR REMOVAL:


To remove the starter from the engine, loosen and disconnect the starter wire, then remove the two hex head screws that hold the starter in place.

STARTER MOTOR INSTALLATION:

To install the starter motor, reverse the previous steps.

TORQUE SPECIFICATION
HEX HEAD SCREWS ON STARTER MOTOR
216 inch-pounds

TESTING THE STARTER MOTOR

CHECKING THE PINION:

When the starter motor is activated, the pinion gear should rise and engage the ring gear. If the pinion does not rise normally, inspect the large spiral threads of the sleeve and pinion for binding or sticking.

TOOLS FOR STARTER PERFORMANCE TEST:

The following equipment may be used to complete a performance test of the starter motor:

- A digital multimeter (VOM).
- A tachometer capable of reading up to 1,500 rpm.
- A fully charged 12-volt battery.

STARTER PERFORMANCE TEST:

- 1. Set the meter to read DC amps.
- 2. Connect the STARTER MOTOR, BATTERY and VOM as shown in Figure 6.2.

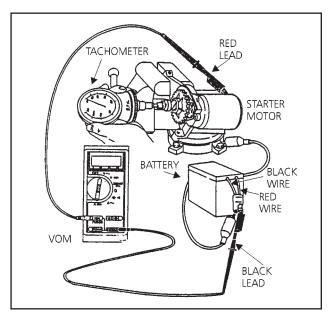


Figure 6.2 — Starter Performance Test

3. Insert the tachometer at end of the pinion gear and activate the starter motor. A starter motor in good condition will be within the following specifications:

STARTER MOTOR PERFORMANCE SPECIFICATIONS AT 12 VOLTS DC MINIMUM MOTOR RPM = 800 MAXIMUM AMPS = 9

If the starter does not perform satisfactorily, it should be replaced.

BATTERY MAINTENANCE

GENERAL

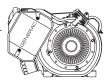
Many of the batteries in use today are "maintenance free" and require little or no maintenance. In most cases, battery failure requires replacement of the battery. The lead-acid cells found in many products, however, still require maintenance. Maintenance of lead-acid batteries falls into three categories:

- Inspecting the battery.
- Maintaining proper electrolyte levels.
- Charging the battery properly.

INSPECTING THE BATTERY:

Inspect the battery case for cracks or signs of damage.
Inspect battery terminals periodically and keep them clean.

NOTE: Always make sure that the battery is fully charged.


ELECTROLYTE LEVEL:

Check the battery electrolyte level regularly. When level is low, add distilled water to the correct level.

NOTE: After adding distilled water, do not check electrolyte specific gravity until after the battery has been recharged. Adding of sulfuric acid is NOT recommended. If the battery has been recharged and specific gravity is not correct, replace the battery.

TESTING A BATTERY

- 1. Visually inspect the battery case for cracks and other defects. If damaged, replace the battery.
- 2. Check the electrolyte level in all battery cells.
 - a. If distilled water is added, recharge the battery before taking a specific gravity reading.
 - b. Charge the battery until it is gassing freely, then take the specific gravity reading.
- 3. Begin at one end of the battery and check the first cell, using an automotive type battery hydrometer.
 - a. Take two or three samples from the cell to stabilize the reading.

- b. Once stabilized, draw in the final sample.
- c. Draw in only enough electrolyte to obtain a reading do not let the hydrometer float hit the suction bulb.
- d. Hold the hydrometer vertically and shake it gently to make sure the float is not sticking to the inside of the glass barrel.
- e. Read and record the specific gravity reading.
- 4. Check the temperature of the fluid. Add the required points if temperature is above 80 F. Subtract the required points if below 80 F (see Figure 6.3).
- 5. Check and record readings of the remaining cells in the same manner.
- 6. When all cells have been checked, subtract the lowest reading obtained from the highest reading. If there is more than 30 points difference, the battery is probably defective and should be replaced.

In Figure 6.3, the highest reading is 1.260, and the lowest reading is 1.225. Subtract 1.225 from 1.260 to obtain a 35 point difference.

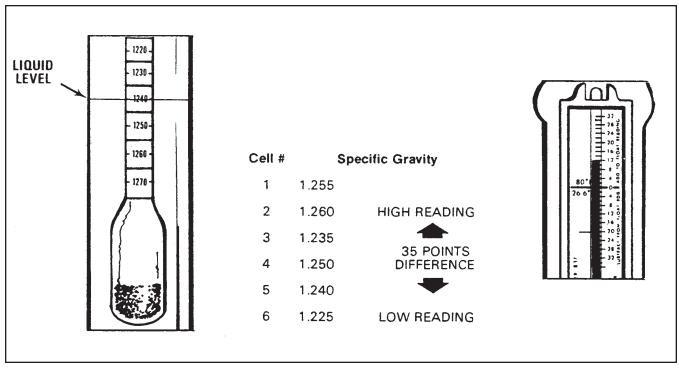
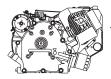



Figure 6.3 — Using a Battery Hydrometer

GENERAL

In the course of tearing down a complete engine for service and repairs, the engine shrouds and covers may need to be removed. The following section briefly describes the order in which these items should be removed.

- 1. Remove air cleaner assembly and carburetor as described in Section 2, "AIR CLEANERS AND CARBURETION."
- 2. Disconnect the governor rod and anti-lash spring from the carburetor.
- 3. Remove the five capscrews from the BLOWER HOUSING ASSEMBLY (see Figure 7.1).

Carefully remove the blower cover, making sure not to stretch the wires from the RUN/STOP switch and low oil indicator (LOS). When the cover is far enough away from the engine, these wires may be unplugged.

4. Remove the capscrew from the LOWER SHROUD (see Figure 7.1).

4. Remove the two capscrews from the UPPER SHROUD (see Figure 7.1).

NOTE: The blower cover is notched at the point where the governor rod and anti-lash spring pass through it. This allows the cover to be removed without disconnecting the governor rod from the governor arm.

NOTE: It will be helpful to make note of the locations of the screws that hold the covers in place.

INSTALLATION OF COVERS AND SHROUDS:

To reinstall the covers and shrouds, reverse the previous steps. Make sure that the wires for the RUN/STOP switch and low oil indicator (LOS) are not in the way of the covers during reassembly.

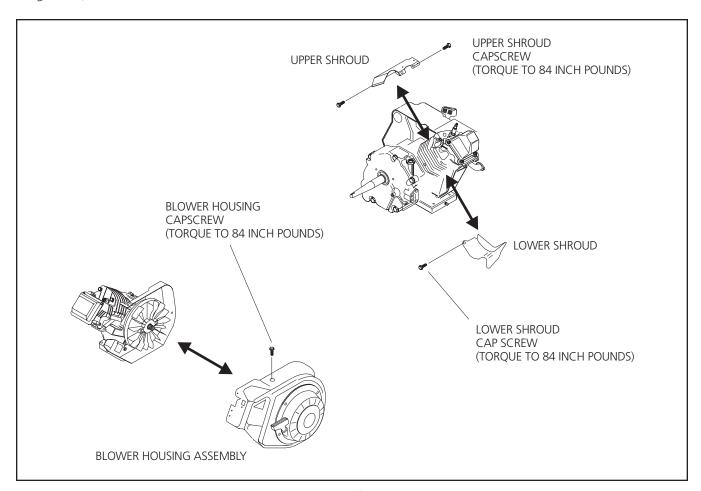
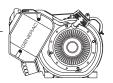



Figure 7.1 — Exploded View of Engine Covers and Shrouds

GENERAL

The ignition system typically used on GN-320/GN-360/GN-410 engines is a solid-state (breakerless) type. The system utilizes a magnet on the engine flywheel to induce a relatively low voltage into an ignition coil assembly. Ignition coil internal components increase the voltage and deliver the resulting high voltage across the spark plug gap.

The ignition coil houses a solid-state circuit board that controls ignition timing. Timing is fixed, nonadjustable and spark advance is automatic.

MAJOR COMPONENTS

Major components of the ignition system include (a) the ignition coil assembly, (b) the spark plug, (c) the engine run switch and (d) the engine flywheel (see Figures 8.1 and 8.4).

Figure 8.1 — Ignition System Components

IGNITION COIL ASSEMBLY

Solid-state components encapsulated in the ignition coil are not accessible and cannot be serviced. If the coil is defective, the entire assembly must be replaced. The air gap between the coil and the flywheel magnet is fixed and nonadjustable.

The ignition coil assembly (Figure 8.2) consists of (a) ignition coil, (b) spark plug high tension lead and (c) spark plug boot.

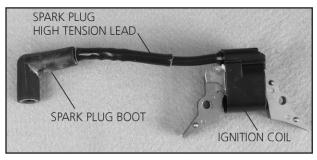


Figure 8.2 — Ignition Coil Assembly

SPARK PLUG

The spark plug should be cleaned and regapped periodically. The plug should be replaced every 100 hours of operation or once annually, whichever comes first.

Recommended spark plug is a Champion RC12YC or equivalent. Set spark plug gap to 0.030 inch (0.76mm) (Figure 8.3).

NOTE: Always use original GENERAC® replacement parts.

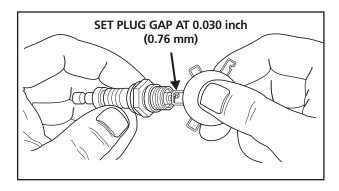


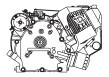
Figure 8.3 — Setting Spark Plug Gap

FLYWHEEL

CHECKING FLYWHEEL MAGNET:

The flywheel magnet rarely loses its magnetism. If you suspect a magnet might be defective, a rough test can be performed as follows:

- 1. Place the flywheel on a wooden surface.
- 2. Hold a screwdriver at the extreme end of its handle and with its point down.
- 3. Move the tip of the screwdriver to about 3/4 inch (19mm) from the magnet. The screwdriver blade should be pulled in against the magnet.

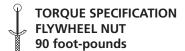

FLYWHEEL KEY:

The flywheel's taper is locked on the crankshaft taper by the torque of the flywheel nut. A keyway is provided for alignment only and theoretically carries no load.

If the flywheel key becomes sheared or even partially sheared, ignition timing can change. Incorrect timing can result in hard starting or failure to start.

FLYWHEEL REMOVAL:

Use a strap wrench to prevent the flywheel from turning. Remove the FLYWHEEL NUT. Then, remove the CONICAL WASHER and the STARTER CUP.



Use a commercially available flywheel puller to remove the flywheel from the engine tapered shaft.

FLYWHEEL INSTALLATION:

Align the keyway in the flywheel with the woodruff key on the crankshaft. Install the flywheel, the conical washer and the starter cup. Install the flywheel nut and tighten to the proper torque.

NOTE: The conical washer must be installed in the proper direction (see Figure 8.4) with the convex side facing out (away from the flywheel).

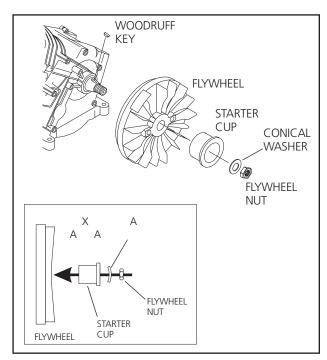


Figure 8.4 — Exploded View of Flywheel Assembly

TESTING THE IGNITION SYSTEM

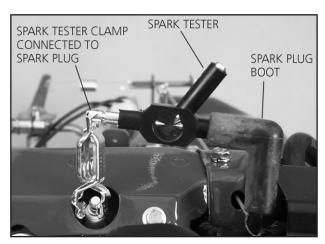
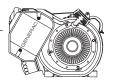
Use a spark tester to test the ignition system. Such spark testers are commercially available. Test the system as follows:

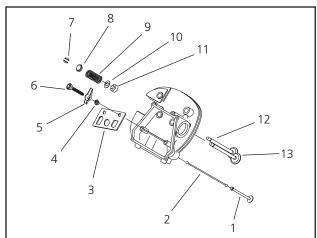
- 1. Disconnect the high tension lead from the spark plug.
- 2. See Figure 8.5. Attach the spark tester clamp to the engine cylinder head (frame ground). Attach the spark plug high tension lead to the tester terminal.
- 3. Crank the engine rapidly. If spark jumps the gap of the spark tester, you may assume the ignition system is operating satisfactorily.

Figure 8.5 — Testing Ignition System

NOTE: If the flywheel key is sheared or partially sheared, spark can jump the tester gap. However, loss of correct ignition timing may result in hard starting or no starting at all.

- 4. To determine if an engine miss is ignition related, connect the spark tester in series with the high tension lead and the spark plug (Figure 8.6). Then, test the system as follows:
 - a. Start the engine.
 - b. If spark jumps the tester gap regularly but the miss continues, the problem is in the spark plug or in the fuel system. A spark miss will be readily apparent.


Figure 8.6 — Checking for Engine Miss

NOTE: The ignition system described in this section is typically used on horizontal shaft engines. The ignition system used on all vertical shaft (RV) engines differs from that of horizontal shaft engines. See "SERVICE MANUAL COMPUTER CONTROLLED VARIABLE SPEED RV GENERATORS," Manual Part No. 94468-A.

MAJOR COMPONENTS

Valve train components are shown in Figure 9.1 below.

ITEM	QTY	DESCRIPTION
1	2	Tappet
2	2	Push Rod
3	1	Push Rod Guide Plate
4	2	Rocker Arm Jam Nut
5	2	Rocker Arm
6	2	Pivot Ball Stud
7	4	Valve Spring Keeper
8	2	Valve Spring Retainer
9	2	Valve Spring
10	2	Wear Washer
11	1	Intake Valve Stem Seal
12	1	Exhaust Valve
13	1	Intake Valve

Figure 9.1 — Valve Train Components

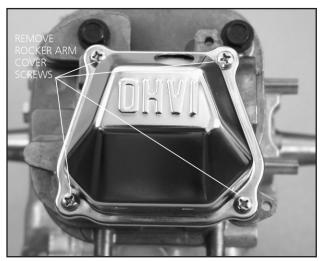


Figure 9.2 — Removal of Rocker Arm Cover

DISASSEMBLY

1.Remove the oil breather tube. Remove the four M6-1.00 x 12mm screws. Then, remove the rocker arm cover (see Figure 9.2).

NOTE: Whenever the rocker arm cover is removed, the cover gasket must be replaced to ensure a proper seal.

2. Loosen the rocker arm jam nuts on the pivot ball studs. Then, loosen the pivot ball studs. Remove the two pivot ball studs, rocker arms and jam nuts. Also, remove the push rod guide plate.

NOTE: Always keep intake and exhaust valve parts separated. Intake and exhaust pivot ball studs, rocker arms and push rods are identical. However, the wear patterns will be different.

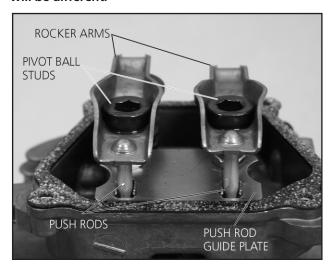


Figure 9.3 — Rocker Arms, Pivot Ball Studs, Push Rods and Push Rod Plate

- 3. Remove the push rods (see Figure 9.3).
- 4. Remove the cylinder head bolts, then the cylinder head and cylinder head gasket (see Figure 9.4).

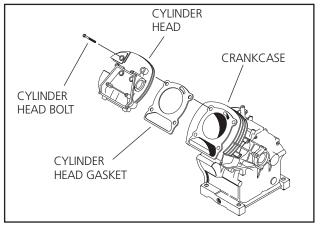
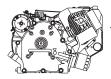



Figure 9.4 — Cylinder Head Removal

NOTE: Replace the cylinder head gasket every time the cylinder head is removed. The new head gasket must be free of nicks and scratches as these could cause leaks.

TO PREVENT EYE INJURY, ALWAYS WEAR EYE PROTECTION WHEN REMOVING VALVE SPRINGS.

- 5. Place a commercially available small engine valve spring compressor squarely on top of the valve spring retainer. The split valve keepers should "pop" out. (see Figure 9.5).
- 6. With the split valve spring keepers removed, remove the valve spring retainers, valve springs, valve spring washers, and the intake and exhaust valves
- 7. Clean all parts. Remove carbon from the valve heads and stems. Inspect the valves and valve seats. Service parts as outlined under "Valve Service."

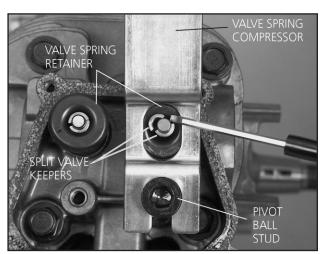
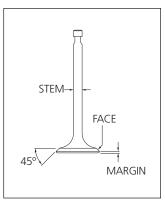
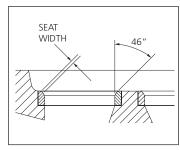



Figure 9.5 — Remove Valve Spring Keepers

VALVE SERVICE

VALVES:



Replace valves if they are damaged, distorted, or if the margin is ground to less than 0.039 inch (1.0mm). If the valve is in usable condition, use a valve grinder to grind the valve face to a 46° angle. After reconditioning, the valves should be lapped with a suitable valve lapping tool and valve lapping compound (see Figure 9.6).

Figure 9.6 — Valve

NOTE: Proper lapping of valves and seats will remove grinding marks and ensure a good seal between the valve and its seat. After lapping, be sure to remove all lapping compound from the valve faces and seats.

VALVE SEATS:

Valve seats are not replaceable. If they are burned or pitted, they can be reground using a grinding stone or Neway Valve Reseater. Grind seats at a 46° angle and to a width of 0.039 inch (1.0mm) (see Figure 9.8).

Figure 9.7 — Valve Seat

The recommended procedure for cutting a valve is to use the "Neway Valve Cutting System." This type of system uses cutters of three different degrees.

First, use the 60° cutter to clean and narrow the seat from the bottom toward the center (see Figure 9.8).

Second, use a 31° cutter to clean and narrow the seat from the top to the center.

Finally, use a 46° cutter to cut in the seat to a width of 0.039 inch (1mm).

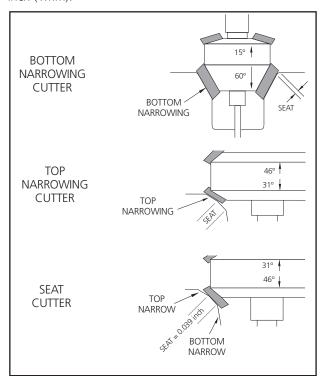
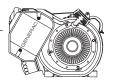



Figure 9.8 — Cutting a Valve Seat — 3 Steps

VALVE SERVICE (CONTINUED)

VALVE GUIDES:

Valve guides are permanently installed in the cylinder head and cannot be replaced (see Figure 9.9).

At the time of this writing, oversize valves were NOT available. Thus, if valve guides are worn or damaged, the guides cannot be reamed to accommodate an oversize valve stem.

DESIGN DIAMETER OF VALVE GUIDES GN-320, GN-360, GN-410 0.275-0.276 inch (7.005-7.020 mm)

INTAKE VALVE STEM DIAMETER GN-320, GN-360, GN-410 0.274-0.275 inch (6.965-6.980 mm)

EXHAUST VALVE STEM DIAMETER GN-320, GN-360, GN-410 0.273-0.274 inch (6.945-6.960 mm)

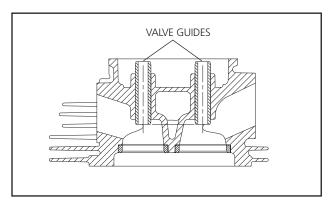
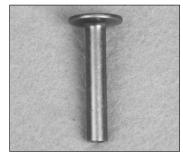
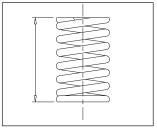



Figure 9.9 — Valve Guides


VALVE TAPPETS:

The valve tappets (Figure 9.10) will be removed when the camshaft is removed. Intake and exhaust valve tappets are identical. However, once a wear pattern has been established, the two parts should not be interchanged.

Figure 9.10 — Tappet

VALVE SPRINGS:

Inspect the valve springs (Figure 9.11). Measure the spring FREE LENGTH. Also measure the spring length when a known load is applied to the spring.

Figure 9.11 — Valve Spring

VALVE SPRING FREE LENGTH GN-320, GN-360, GN-410 1.752-1.764 inch (44.5-44.8 mm)

FORCE NEEDED TO COMPRESS SPRING TO 1.59 incn (4.33 mm) 15.3-16.9 pounds (6.9-7.6 kg)

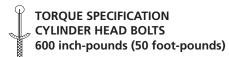
INSTALLATION

After the valve train components have been properly inspected and serviced, install the components as follows:

- 1. Install the intake and exhaust valves through the proper valve guides in the cylinder head.
 - a. The exhaust valve has the smaller head.
 - b. The intake valve has the larger head.
 - c. Valve seat sizes will match their respective valve head sizes.
 - d. The exhaust valve stem is smaller than the intake valve stem.

NOTE: Be sure to lubricate valve stems and valve guides before assembly!

- 2. The intake valve has a valve stem seal.
 - a. Install the intake valve stem seal.
 - b. Install the valve spring washer, the valve spring and the valve spring retainer.
 - c. Install the valve spring keepers.


NOTE: To install valve spring keepers, use the valve spring compressor to compress the spring enough to insert one keeper half. Compress the spring again to insert the other keeper half.

- 3. The exhaust valve does not have a valve stem seal.
 - a. Install the valve spring washer, valve spring and valve spring retainer.
 - b. Install the valve spring keepers.
- 4. After both valves have been properly installed in the head, position the new head gasket and install the cylinder head.

NOTE: The head gasket is coated with a special substance for better sealing. It must be free of nicks, scratches and other defects, or leakage could result.

5. Install the cylinder head bolts and tighten them in the sequence shown in Figure 9.13.

- 6. Position the push rod guide plate on the head. Then install the rocker arms and pivot ball studs. Install the jam nuts far enough to hold the guide plate in position. Valve clearance will be adjusted later.
- 7. Rotate the rocker arm as shown in Figure 9.15 to install the push rod. Insert the push rod through the push rod guide plate, with either end resting against the tappet. Place the rocker arm over the push rod. Alignment is correct when push rod ball rests in the rocker arm socket.

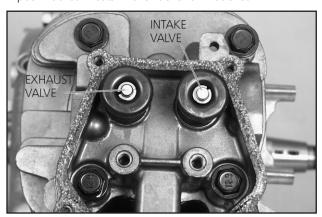


Figure 9.12 — Intake and Exhaust Valves

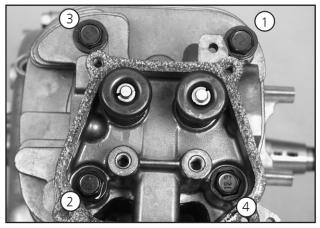


Figure 9.13 — Head Bolt Tightening Sequence

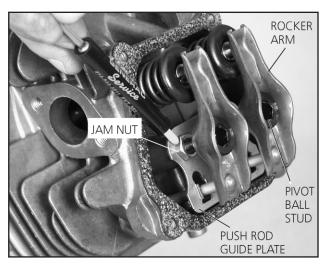
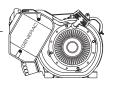


Figure 9.14 — Install Rocker Arm and Pivot Ball Stud

Figure 9.15 — Install Push Rods


ADJUSTING VALVE CLEARANCE

Adjust valve clearance with the engine at room temperature. The piston should be at top dead center (TDC) of its compression stroke (both valves closed). Adjust valve clearance as follows:

1. Loosen the rocker arm jam nut. Use an allen wrench to turn the pivot ball stud while checking the clearance between rocker arm and valve stem with a feeler gauge (see Figure 9.16).

VALVE CLEARANCE GN-320, GN-360, GN-410 0.002-0.004 inch (0.0508-0.1016mm)

2. When clearance is correct, hold the pivot ball stud with the allen wrench and tighten the rocker arm jam nut to the specified torque with a crow's foot. After tightening the jam nut, recheck valve clearance to make sure it did not change.

TORQUE SPECIFICATION ROCKER ARM JAM NUT 174 inch-pounds (14.5 foot-pounds)

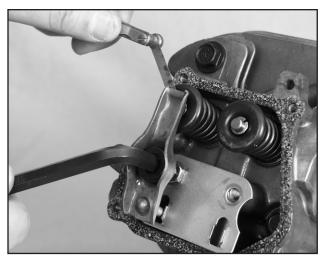


Figure 9.16 — Adjusting Valve Clearance

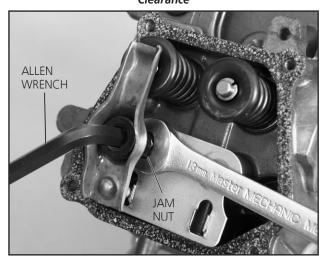


Figure 9.17 — Tightening Rocker Arm Jam Nut

INSTALL ROCKER ARM COVER

- 1. Use a new rocker arm cover gasket. Install the rocker arm cover and retain with four screws (see Figure 9.18).
- 2. Install oil breather tube.

TORQUE SPECIFICATION ROCKER ARM COVER SCREWS 48 in-lbs (4 ft-lbs)

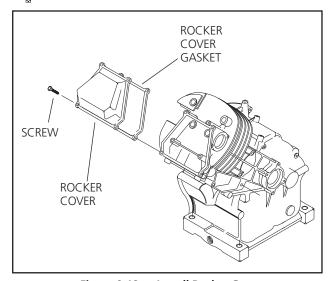
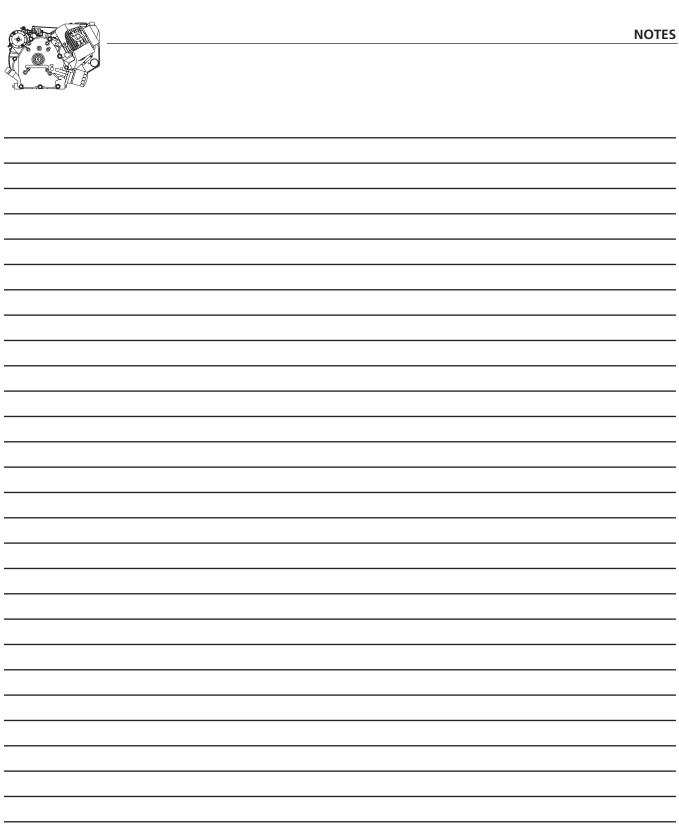
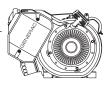




Figure 9.18 — Install Rocker Cover

GENERAL

There are no oversize pistons or rings available for these engines. For that reason, if the cylinder is damaged or worn excessively, the crankcase must be replaced.

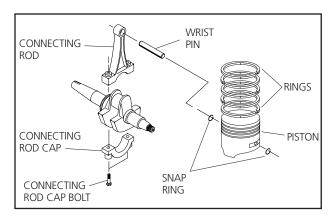


Figure 10.1 — Pistons, Rings and Connecting Rod

REMOVAL

Before attempting to remove the piston and connecting rod, clean all carbon from the cylinder bore (to prevent ring breakage). Then, remove the piston and rod as follows:

- 1. Remove the cylinder head (see Section 9).
- 2. Remove the crankcase cover (see Section 11)
- 3. Remove the connecting rod cap bolts and the connecting rod cap.
- 4. Push the piston and rod out through top of cylinder.

PISTON

Figure 10.2 — Piston, Wrist Pin and Snap Ring

REMOVAL FROM CONNECTING ROD:

An oil hole in the wrist pin area of the piston helps distribute oil to aid in cooling. This oil hole also provides an assist in removing the wrist pin snap ring. To remove the piston from the rod, proceed as follows:

- 1. Move the snap ring around until its protruding wire is aligned with the notched-out oil hole. Use needle nose pliers to turn the snap ring and pull it toward you.
- 2. With one snap ring removed, slide the wrist pin out of its piston boss. Completely remove the wrist pin and separate the piston from the connecting rod.

CHECK PISTON FOR WEAR:

The piston is slightly elliptical. Its larger diameter is 90° from the wrist pin boss; its smaller diameter is in line with the wrist pin boss (see Figure 10.3).

NOTE: An assembly mark is provided on the piston. This mark must face the flywheel end of crankshaft (3:00 position) during reassembly.

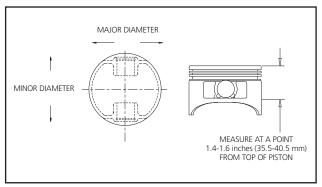
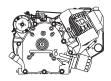



Figure 10.3 — Piston Major and Minor Diameter

To check the piston for wear, proceed as follows:

- 1. Check the piston's MINOR DIAMETER.
 - a. At a position directly in-line with the wrist pin hole, measure down from top of piston to a distance of 1.4-1.6 inches (35.5-40.5mm) (see Figure 10.3).
 - b. Measure at this point to check for wear. If worn excessively, replace piston.
- 2. Check the piston's MAJOR DIAMETER.
 - a. At a point 90° from the wrist pin hole, measure down from top of piston to a distance of 1.4-1.6 inches (35.5-40.5mm) (see Figure 10.3).
 - b. Measure at this point to check for wear. If wear is excessive, replace the piston.

7

PISTON MINOR DIAMETER GN-320 3.135-3.136 inch (79.628-79.648 mm)

PISTON MAJOR DIAMETER
GN-320

3.147-3.148 inch (79.928-79.948 mm)

PISTON MINOR DIAMETER GN-360 3.332-3.333 inch (84.624-84.648 mm)

PISTON MAJOR DIAMETER GN-360 3.343-3.344 inch (84.928-84.948 mm)

PISTON MINOR DIAMETER GN-410 3.529-3.530 inch (89.628-89.648 mm)

PISTON MAJOR DIAMETER
GN-410
3.540-3.541
(89.928-89.948 mm)

- 3. Check wrist pin for looseness.
 - a. A quick check for wear in (a) the wrist pin, (b) wrist pin bore in piston or (c) wrist pin bore in rod is to check for looseness or play with the piston assembled to the rod.
 - b. Looseness or play indicates a worn wrist pin, or a worn wrist pin bore in the piston or rod.

NOTE: Tolerances between the wrist pin and wrist pin bores are extremely close. Always apply engine oil to the pin and its bores prior to installation.

- 4. Check wrist pin and wrist pin bores for wear.
 - a. Measure the outside diameter of the wrist pin.
 - b. Measure the inside diameter of the wrist pin bore in piston.
 - c. Measure the inside diameter of the wrist pin bore in connecting rod.
 - d. Measure the wrist pin length.
- 5. If excessive wear is found, replace the worn part.

WRIST PIN OUTSIDE DIAMETER GN-320, GN-360, GN-410 0.786-0.787 inch (19.984-19.995 mm)

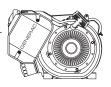
WRIST PIN LENGTH
GN-320, GN-360, GN-410
2.669-2.685 inch
(67.8-68.2 mm)

DIAMETER OF WRIST PIN BORE IN PISTON GN-320, GN-360, GN-410 0.787-0.788 inch (20.000-20.011 mm)

DIAMETER OF WRIST PIN BORE IN ROD GN-320, GN-360, GN-410 0.788-0.789 inch (20.02-20.03 mm)

PISTON RINGS

GENERAL:


The following general rules pertaining to piston rings must always be complied with:

- Always replace piston rings in sets.
- Use a ring expander to remove or install piston rings, or breakage could result. Do not spread the rings too far apart or they might break.
- Use a ring compressor when installing the piston into the cylinder.
- When installing NEW rings, deglaze the cylinder walls with a commercially available deglazing tool.

DESCRIPTION:

A piston ring set consists of (a) a top compression ring, (b) a second compression ring and (c) an oil ring assembly.

- The OIL CONTROL RING is a three-piece assembly consisting of two oil rails and an oil spacer ring. Oil rails have a rounded face and may be installed with either side up.
- The SECOND COMPRESSION RING has an inside chamfer. This chamfer must face upward when installing the ring.
- The TOP COMPRESSION RING has a barrel shaped face and can be installed with either side facing up.

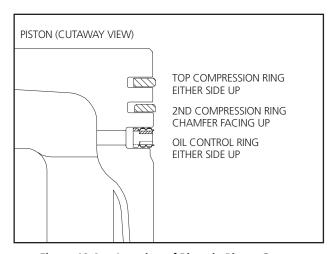


Figure 10.4 — Location of Rings in Piston Grooves

RING END GAP:

Inside the cylinder, locate a point that is 2.75 inches (70mm) down from the top of the cylinder (about halfway down). Place ring into cylinder and use the piston to push the ring down to the stated depth. Check ring end gap with a feeler gauge. See Figure 10.5.

If the ring end gap is excessive, the cylinder is worn excessively.

TOP RING END GAP GN-360 0.006-0.016 inch (0.15-0.40 mm)

TOP RING END GAP GN-410 0.010-0.020 inch (0.25-0.50 mm)

SECOND RING END GAP GN-320 0.007-0.017 inch (0.18-0.43 mm)

SECOND RING END GAP GN-360 0.009-0.024 inch (0.23-0.60 mm)

NOTE: Oversize pistons and rings are not available. If the cylinder is worn or damaged, the crankcase must be replaced.

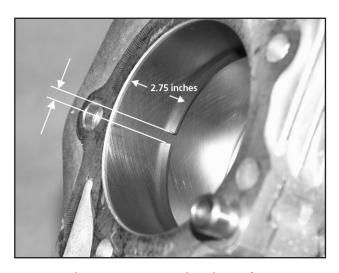


Figure 10.5 — Measuring Ring End Gap

CONNECTING ROD

The connecting rod is manufactured of die-cast aluminum. Match marks on the rod and on the rod cap must be aligned when assembling the rod to the crankshaft.

CAUTION! DO NOT USE A WASHER WHEN ASSEMBLING THE ROD CAP.

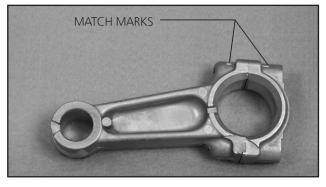
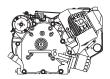



Figure 10.6 — Match Marks on Rod and Cap

ASSEMBLY AND INSTALLATION

ASSEMBLY:

- 1. Install the rings (Figure 10.4).
 - a. Use a ring expander when installing rings into the piston grooves.
 - b. Install the oil ring assembly first.
 - c. Install the second compression ring with its chamfer facing up.
 - d. Finally, install the top compression ring.
- 2. Assemble piston, rod and wrist pin.
 - a. The assembly mark on piston must be toward the engine flywheel side.
 - b. Coat the wrist pin, wrist pin bore in piston and the wrist pin bore in rod with clean engine oil.
 - c. Install one snap ring into the piston's wrist pin bore.

NOTE: Use new snap rings when reassembling the piston.

- d. Assemble the piston to the rod and slide the wrist pin through one piston bore, through the rod bore and through the second piston bore until it contacts the snap ring.
- e. Finally, install the second snap ring to retain the wrist pin in the piston and rod bores.

INSTALLATION:

- 1. Coat the cylinder walls with clean engine oil.
- 2. Coat crankshaft crankpin, connecting rod bearing and connecting rod cap bearing with engine oil.
- 3. Reinstall the crankshaft.
- 4. Use a ring compressor to compress the piston rings back into their grooves in the piston. Rings must be fully compressed.
- 5. Guide the connecting rod into the cylinder carefully. The assembly mark on the piston must be toward the flywheel side of engine (3 o'clock position).

NOTE: The connecting rod has a large offset bearing end, therefore it MUST be installed exactly the way in which it was removed, with the match marks facing the governor arm.

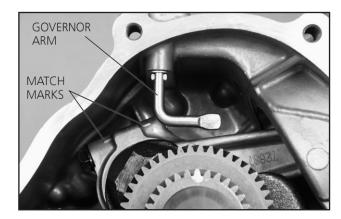
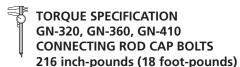
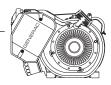



Figure 10.7 — Match Marks on Rod Facing Governor Arm.

- 6. When the ring compressor contacts top of cylinder, use a wood hammer handle to gently tap the piston down into the cylinder.7. Check that the connecting rod large diameter bearing is coated with clean engine oil, as well as the crankpin and connecting rod cap.
- 8. Guide the connecting rod large diameter bearing over the crankshafts crankpin (rod journal).
- 9. Install the connecting rod cap with its match mark aligned with identical mark on rod.
- 10. Install the connecting rod cap bolts and tighten to the proper torque.

CYLINDER SERVICE

INSPECTION:


- 1. Inspect cylinder for dirty, broken or cracked cooling fins.
- 2. Check cylinder wall for wear, scoring or other damage.
- 3. Check all bearing surfaces for wear, scoring or other damage.

REBORING THE CYLINDER:

At the time this Manual was published, oversize pistons and rings were not available and reboring of the cylinder to an oversize cannot be done.

CAUTION! DO NOT ATTEMPT TO REBORE THE CYLINDER. OVERSIZE PARTS ARE NOT AVAILABLE.

CRANKCASE COVER REMOVAL

Before attempting to remove the crankcase cover, remove all rust, burrs and paint from the power take-off (PTO) end of the crankshaft. This will reduce the possibility of damaging the oil seal in the crankcase cover during cover removal. Remove the crankcase cover as follows:

- 1. Drain oil from the crankcase.
- 2. Remove the engine cylinder head, push rods and push rod guide plate (see Section 9).
- 3. Remove the eight flange head bolts that retain the crankcase cover.
- 4. Remove the crankcase cover (Figure 11.1). If necessary, tap lightly with a soft hammer on alternate sides of cover. Be aware that the oil pump rotors may drop out as the crankcase cover is removed.

Figure 11.1 — Crankcase Cover Removal

CRANKSHAFT CAMSHAFT AND BALANCER REMOVAL

With the crankcase cover removed, the crankshaft, camshaft and balancer can be removed from their crankcase bores. Remove these components as follows (see Figure 11.2):

- 1. Tip the engine over onto the flywheel end of the crankshaft.
- 2. Reach in with two fingers and hold the tappets up and clear of the camshaft lobes. Then, remove the camshaft, both tappets, and the inner and outer oil pump rotors.
- 3. Remove the balancer.
- 4. Before removing the crankshaft, remove the engine flywheel (see Section 8). Also remove the piston and connecting rod (section 10). The crankshaft may now be removed.

BALANCER INSPECTION

Clean the balancer in solvent. Then inspect the balancer as follows:

- 1. Check for physical damage. Replace the balancer if damaged.
- 2. Measure the outside diameter (O.D.) of the balancer shaft ends. Replace balancer if wear limits are exceeded.

NOTE: Refer to "ENGINE SPECIFICATIONS" pages 55-61 of this manual for design sizes and wear limits.

- 3. Measure the inside diameter (I.D.) of the balancer shaft bearing bore in the crankcase cover and in the crankcase.
 - a. If balancer bearing bore in crankcase cover exceeds wear limits, replace the crankcase cover.
 - b. If balancer bearing bore in crankcase exceeds wear limits, replace the crankcase assembly.

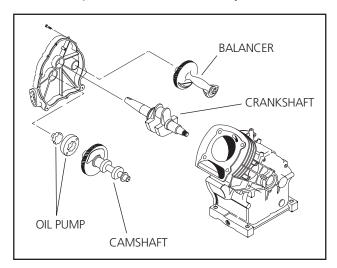


Figure 11.2 — Crankshaft, Camshaft and Balancer Removal

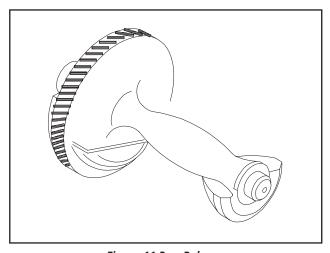
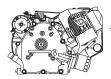



Figure 11.3 — Balancer

CAMSHAFT INSPECTION

Carefully inspect the entire camshaft for wear, nicks or other damage. All areas indicated in figure 11.4 should be inspected.

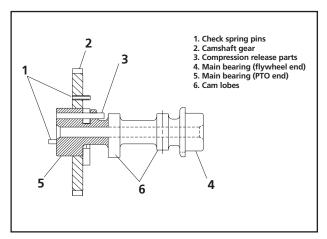


Figure 11.4 — Points to Check on Camshaft

Carefully measure the following to check them for wear. If wear limits are exceeded, replace the defective part.

CRANKSHAFT BEARING BORE
IN CRANKCASE COVER
DESIGN DIAMETER = 1.380-1.381 inch
(35.065-35.090 mm)

CRANKSHAFT BEARING BORE
IN CRANKCASE
DESIGN DIAMETER = 1.380-1.381 inch
(35.065-35.090 mm)

CAM LIFT AT BOTH CAM LOBES DESIGN LIFT = 0.211 inch (5.36 mm)

CAMSHAFT DIAMETER — FLYWHEEL END DESIGN DIAMETER = 1.081-1.082 inch (27.46-27.48 mm)

CAMSHAFT DIAMETER — PTO END DESIGN DIAMETER = 1.297-1.298 inch (32.96-32.98mm)

CRANKSHAFT INSPECTION

CRANKSHAFT PROPER:

Using a commercial solvent, clean the crankshaft thoroughly. After cleaning, inspect the crankshaft as follows:

- 1. Inspect keyways in crankshaft (see Figure 11.5). Make sure they are not worn or spread apart. Remove burrs from edges of keyways, to prevent scratching the bearing.
- 2. Inspect the crankshaft gear for chipping or cracking. If timing gear is damaged, the crankshaft must be replaced.
- 3. Inspect the crankpin for nicks, scratches or other damage. Small scratches and nicks can be polished out using fine emery cloth. ALL EMERY CLOTH RESIDUE MUST BE COM-PLETELY REMOVED USING A SOLVENT (SUCH AS KEROSENE).
- 4. Carefully measure the diameters of the crankpin, crankshaft journal at flywheel end, and the crankshaft journal at PTO end. Replace the crankshaft if it is worn beyond the stated repair limits.

NOTE: The crankpin must NOT be ground to any smaller diameter. Undersize connecting rods are NOT available.

CRANKPIN DIAMETER
DESIGN DIAMETER = 1.417-1.418 inch
(35.99-36.01 mm)

CRANKSHAFT MAIN BEARING DIAMETER FLYWHEEL END DESIGN DIAMETER = 1.378-1.379 inch (35.000-35.012 mm)

CRANKSHAFT MAIN BEARING DIAMETER PTO END DESIGN DIAMETER = 1.378-1.379 inch (35.000-35.012 mm)

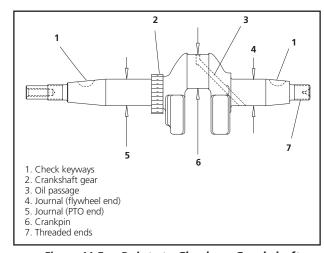
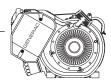



Figure 11.5 — Points to Check on Crankshaft

CRANKSHAFT SLEEVE BEARING:

The crankshaft bore in the crankcase is a pressure lubricated oil bearing that may or may not include an additional sleeve bearing, depending on the vintage of the engine (Figure 11.6).

The crankshaft bore in the crankcase cover is also a pressure lubricated oil bearing.

Inspect the bearing and bearing bore as follows:

- 1. Where applicable, check the sleeve bearing in the crankcase for damage.
 - a. Measure the inside diameter of the sleeve bearing. Replace the bearing if it is worn excessively.
 - b. Press out the old bearing and press a new bearing into place.

NOTE: Alignment of the oil holes in the sleeve bearing and bearing bore in the crankcase is critical.

CRANKSHAFT SLEEVE BEARING
DESIGN DIAMETER = 1.380-1.381 inch
(35.065-35.090 mm)

- 2. Inspect the crankshaft bearing bore in the crankcase cover for damage and wear (Figure 11.7).
 - a. Measure the Inside diameter of the bearing bore.
 - b. If the bore is worn excessively, replace the crankcase cover.

CRANKSHAFT BEARING BORE
IN CRANKCASE COVER
DESIGN DIAMETER = 1.380-1.381 inch
(35.065-35.090 mm)

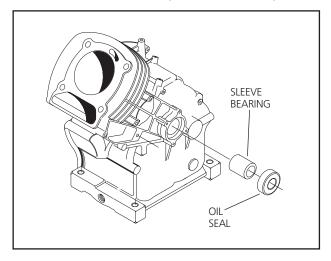


Figure 11.6 — Crankshaft Sleeve Bearing

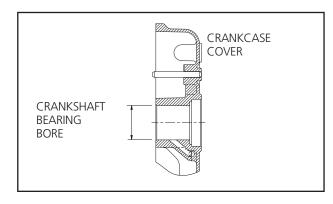


Figure 11.7 — Bearing Bore in Crankcase Cover

COMPRESSION RELEASE

A mechanical compression release is provided on the camshaft (Figure 11.8). A flyweight pivots on a pin mounted in the camshaft gear. The pin itself has a cam action. When the engine is not running, the pin holds the tappet up just slightly, which in turn holds the exhaust valve slightly open. This relieves compression for easier cranking.

When the camshaft spins, the flyweight moves, causing the pin to turn. The tappet is then free to move normally.

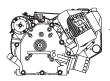


Figure 11.8 — Compression Release Mechanism

Measure the amount of compression relief lift at the tappet (see Figure 11.9).

COMPRESSION RELEASE LIFT GN-320, GN-360, GN-410 DESIGN LIFT = 0.029-0.033 inch (0.745-0.830 mm)

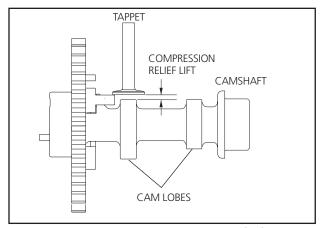


Figure 11.9 — Compression Relief Lift

CRANKSHAFT INSTALLATION

Before installing the crankshaft, lubricate all bearing surfaces with engine oil. Seal protectors should be used to prevent damage to oil seals during installation. Install the crankshaft as follows:

- 1. Lubricate all bearing surfaces with engine oil.
- 2. Install the valve tappets.
- 3. Support both ends of the crankshaft and carefully install into the crankcase.
- 4. Rotate the crankshaft until the timing mark (Figure 11.10) is toward the cam gear side of the crankcase. The timing mark on the crankshaft's large gear will be toward the balancer side.

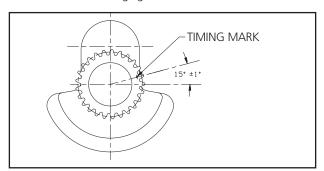


Figure 11.10 — Timing Mark on Crankshaft Gear

NOTE: If the crankshaft gear is spun on the crankshaft, the timing will be off. If this happens, the crankshaft must be replaced. On a fully assembled engine, the keyway on the end of the crankshaft should be in line with the center of the ignition coil when the piston is at top dead center (TDC).

CAMSHAFT INSTALLATION

Apply oil to camshaft bearing and to bearing bore in crankcase. Install the camshaft into the crankcase camshaft bore. Hold the valve tappets out of the way during installation.

NOTE: Some models may have been equipped with a camshaft spring washer. Be sure to use this washer during reassembly, and that it is properly seated between the camshaft and crankcase (see Figure 11.12).

Align the timing mark on the camshaft gear with the timing mark on the crankshaft gear (Figure 11.11). The piston must be at top dead center (TDC).

Figure 11.11 — Alignment of Timing Marks

After installing the crankshaft, the piston and connecting rod can be installed. (See Section 9)

BALANCER INSTALLATION

Apply oil to balancer bearing surfaces and to bearing bore surfaces. Install the balancer into the balancer bearing bore of the crankcase.

The balancer gear must mate with the crankshaft large gear and timing marks must be aligned as shown in Figure 11.10

NOTE: For installation of the oil pump, oil pickup and crankcase cover, see Section 12; "LUBRICATION."

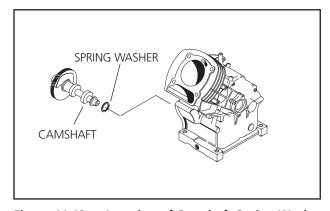
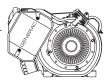



Figure 11.12 — Location of Camshaft Spring Washer on Some Models

GENERAL

The engine lubrication system serves to (a) reduce friction between moving parts, (b) cool the engine and (c) establish a negative pressure in the crankcase to prevent oil seal leakage.

Major components include the following:

- Oil pickup assembly.
- · Oil pump.
- Crankshaft oil seals.
- Pressure relief valve.
- Breather assembly.
- Crankcase cover.
 Low Oil Pressure Switch.

OPTIONAL SYSTEMS:

In addition to the major components listed above, some engines may be equipped with the following options:

Oil filter.

OIL FLOW

See Figure 12.1. An oil pickup screen extends into the crankcase. The oil pump draws crankcase oil through the oil pickup screen and delivers it to the areas requiring lubrication as follows:

- 1. If so equipped, oil will pass through an optional oil filter and through a cored passage in the crankcase cover.
- 2. The cored passage in the crankcase cover allows oil to reach the oil pump and one camshaft bearing surface. Oil flows through the cored passage in the cover and also flows to one crankshaft bearing and one balancer bearing.
- 3. Oil flows through the hollow camshaft to lubricate the camshaft bearing at the opposite end of the camshaft.
- 4. Oil from the end of the camshaft enters a cored passage and flows to one crankshaft bearing and one balancer bearing.
- 5. Oil flows through the crankshaft and to the crank throw to lubricate the rod bearing.
- 6. If oil pressure exceeds 40 psi. The oil pressure relief valve opens.

If not equipped with an oil filter, oil flows through a cored passage in the crankcase cover and then to the oil pump. Oil flow is then identical to units having an oil filter.

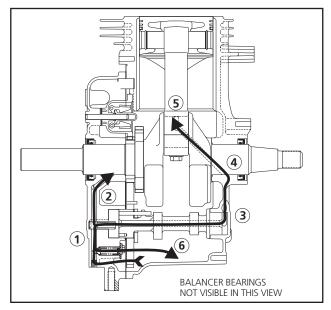


Figure 12.1 — Lubrication System Diagram

OIL PICKUP ASSEMBLY

DESCRIPTION:

(See Figure 12.2)

The oil pickup assembly consists of a cylindrical plastic tube with a screen. Two o-ring seals are installed in grooves at one end of the cylinder. The pickup slides into a bore of the oil filter pad in the crankcase cover and extends into the interior of the crankcase. Once installed in the crankcase cover bore, the pickup is retained by either of the following methods:

- 1.If the engine is supplied with an optional oil filter, the pickup is prevented from coming out of the bore by the oil filter adapter.
- 2. If the engine is not equipped with an optional oil filter, pickup is retained by an oil filter pad cover.

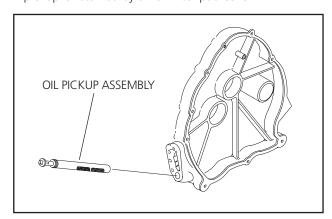
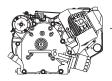



Figure 12.2 — Oil Pickup Assembly

INSPECTION:

Remove the o-ring seals, then clean the pickup in solvent. Inspect the plastic body for cracks or other damage. Check the pickup screen for damage or clogging. Make sure the hollow tube is free of obstructions.

Install the two o-ring seals prior to reassembly. Replace the oil pickup assembly if it is damaged, if the screen is torn or plugged or if the tube is plugged.

OIL PUMP

DESCRIPTION:

The oil pump is of the trochoid type. Its inner rotor rotates on a shaft provided in the camshaft bore of the crankcase cover. The outer rotor is installed over two drive pins on the end of the camshaft and is driven by camshaft rotation.

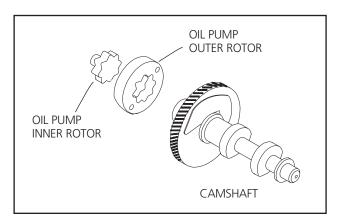


Figure 12.3 — Oil Pump

INSPECTION:

- 1. Inspect the inner and outer rotors for damage and wear (Figure 12.4).
- 2. Use a feeler gauge to check tip clearance of inner rotor, with rotor installed on shaft in crankcase cover.
- 3. Measure the bore inner diameter of the inner rotor.
- 4. Measure the inner rotor thickness.
- 5. Check the outer rotor outside diameter.
- 6. Inspect the outer rotor drive pins on the camshaft. Check for breaking, bending or other damage. The two roll pins can be removed and replaced with relative ease.

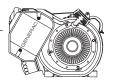
Replace any oil pump component that is damaged or worn excessively.

NOTE: The shaft on which the inner oil pump rotor rotates is NOT replaceable. If the shaft is damaged or worn, the crankcase cover must be replaced.

Figure 12.4 — Inner and Outer Rotor Check Points

OIL PUMP ROTOR TIP CLEARANCE
DESIGN CLEARANCE = 0.0122-0.0123 inch
(0.311-0.313 mm)

INNER ROTOR I.D.
DESIGN DIAMETER = 0.886 inch
(22.5 mm)


INNER ROTOR THICKNESS.
DESIGN THICKNESS = 0.471-0.472 inch
(11.98-12.00mm)

OUTER ROTOR THICKNESS.
DESIGN THICKNESS = 0.472-0.473 inch
(12.00-12.03 mm)

OUTER ROTOR O.D.
DESIGN THICKNESS = 1.296-1.297 inch
(32.92-32.95 mm)

PRESSURE RELIEF VALVE

DESCRIPTION:

A ball type pressure relief valve is located in a bore of the crankcase cover (see Figure 12.5). The ball and spring are held in place by a retainer. The valve serves to limit oil pressure to a maximum value. The ball will remain against its seat as long as oil pressure is below about 40 psi. Should oil pressure increase above that value, the ball will be forced off it's seat to relieve excess oil pressure into the crankcase.

INSPECTION:

Remove the SCREW that retains the RETAINER to the crankcase. Remove the RETAINER, SPRING and BALL (Figure 12.5).

Clean all parts in solvent.

Inspect the BALL and RETAINER for damage, wear. Replace any damaged or worn part. Inspect the SPRING, replace if damaged or worn.

Measure the free length of the oil pressure relief valve spring. Replace the spring if it is not the proper length.

OIL PRESSURE RELIEF VALVE FREE LENGTH DESIGN LENGTH:

0.928 inch (23.57 mm)

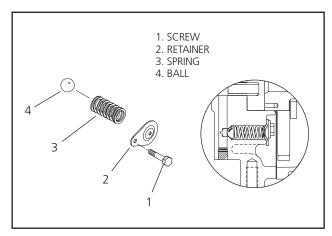


Figure 12.5 — Oil Pressure Relief Valve

CRANKSHAFT OIL SEALS

DESCRIPTION:

An oil seal is provided in the crankcase cover and in the crankcase to prevent oil leakage past the crankshaft journals (Figure 12.6).

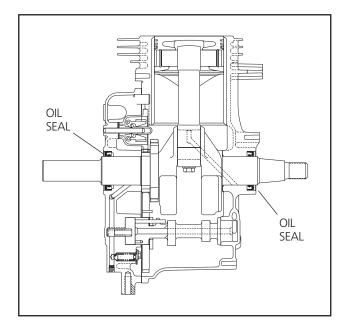
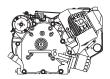



Figure 12.6 — Crankshaft Oil Seals

SEAL REPLACEMENT:

A leaking or otherwise defective oil seal can be replaced as follows:

- 1. If the crankshaft has been removed, old seals can be removed by tapping out with a screwdriver or by punching them out from the inside.
- 2. If the crankshaft is installed, use a commercially available oil seal puller to remove the seals.
- 3. Always use a seal protector when installing the crankshaft into its bearing bore and when installing the crankcase cover over the crankshaft.

BREATHER ASSEMBLY

DESCRIPTION:

A crankcase breather is located in the rocker arm cover of horizontal crankshaft engines (Figure 12.7). The breather serves to maintain a reduced pressure in the engine crankcase, to prevent oil from being forced past the oil seals, gaskets or piston rings.

The CHECK VALVE allows excess pressure to be vented out of the crankcase and to atmosphere through the BREATHER TUBE. Two small DRAIN HOLES allow condensed oil vapors to return to the crankcase.

NOTE: The crankcase breather on vertical shaft GN series engines is mounted on the crankcase assembly and is configured differently. See "SERVICE MANUAL — COMPUTER CONTROLLED VARIABLE SPEED RV GENERATORS," Manual Part No. 94468-A.

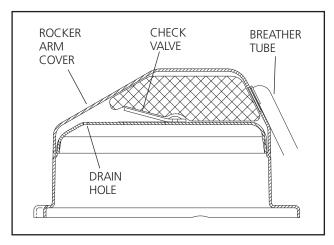


Figure 12.7 — Crankcase Breather

INSPECTION:

- 1. Remove the breather tube. Check tube for cracks, hardening or other damage. Replace if necessary.
- 2. Clean the rocker arm cover in commercial solvent.
- 3. Make sure the two small drain holes are open. If necessary, use a length of wire to open the holes.
- 4. Check the rivets that retain the check valve, make sure they are tight.
- 5. The breather plate is retained in the rocker arm cover with a continuous bead of Type 103 black RTV sealant. This sealant must not leak. Test the sealant for leakage as follows:
 - a. Seal all holes on the breather plate.
 - b. Apply air pressure of 5 psi (0.352 kg/cm) through the breather hose hole. No leakage must be observed.
 - c. If necessary, reseal the plate with Type 103 black RTV sealant.

CRANKCASE COVER

DESCRIPTION:

The die-cast aluminum crankcase cover is retained to the crankcase with eight flanged head bolts.

Install a new gasket between the cover and crankcase each time the cover is removed. Bores are provided in the cover for (a) oil pump rotors and camshaft, (b) crankshaft, (c) balancer, (d) governor gear assembly and (e) the oil pickup assembly. Cored oil passages are provided from the pickup bore to the pump and from the pump to the crankshaft bore.

INSPECTION:

Clean the cover and blow dry with compressed air. Use compressed air to blow out all bores and oil passages. Inspect the cover for cracks, damage, etc. Check the crankshaft, camshaft and balancer bearing bore diameters as outlined in Section 11.

GOVERNOR GEAR INSTALLATION:

- 1. Apply engine oil to the governor gear shaft (Figure 12.8).
- 2. Install the governor gear thrust washer over the governor gear shaft followed by the governor gear assembly.
- 3. Slide the governor retainer ring to a distance of 8mm down over the governor gear shaft.
- 4. Lift the gear assembly up to the governor retainer ring.
- 5. Install the spool over the shaft so that the flange is under the flyweights.
- 6. Slide the governor gear assembly, retainer ring, and spool down the shaft until bottomed out.

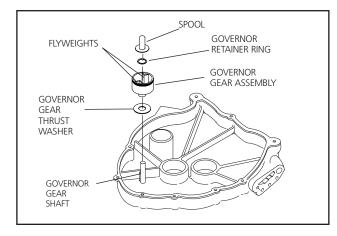
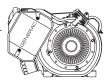



Figure 12.8 — Governor Assembly

CRANKCASE COVER INSTALLATION:

Install the crankcase cover as follows:

1. Rest the engine on its side with the crankcase cover flange facing upward.

- 2. Install the valve tappets, crankshaft camshaft and balancer as described in Section 11.
- 3. Make sure the timing marks on the crankshaft, camshaft and balancer gears are properly aligned.
- 4. Place the crankcase cover gasket onto the crankcase flange.
- 5. Apply clean engine oil to the crankshaft, camshaft and balancer journals.
- 6. Apply clean engine oil to the crankshaft, camshaft and balancer bores in the crankcase cover.
- 7. Install the oil pickup screen. A locating tang on the outer periphery of the oil pickup tube must mate with a locating slot in the crankcase cover bore.

NOTE: If the engine is equipped with an optional oil filter, install the filter adapter, gasket and filter. If not equipped with an oil filter, install adapter gasket and oil block off cover.

- 8. Make sure the camshaft bore in crankcase cover and the oil pump's inner rotor shaft have been coated with oil.
- 9. Apply a small amount of general purpose grease to the oil pump inner rotor. The grease will help prevent that rotor from dropping out when the cover is inverted for installation.
- 10. Install the oil pump inner rotor over the rotor shaft and into the camshaft bore.
- 11. Install the oil pump outer rotor onto the two drive pins at the of the camshaft (see Figure 12.10).

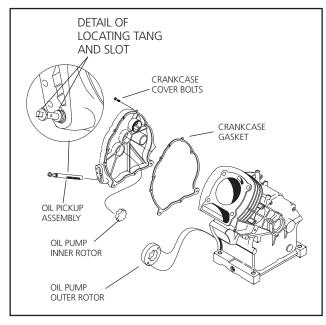


Figure 12.9 — Reassembly of Crankcase Cover and Oil Pump

12. Carefully install the crankcase cover. Align the cover with dowel pins on the crankshaft flange, as well as with the crankshaft, camshaft and balancer. Make sure the cover gasket is on. Rotate the crankshaft to align the oil pump inner and outer rotors. The cover should fall easily into place — DO NOT FORCE.

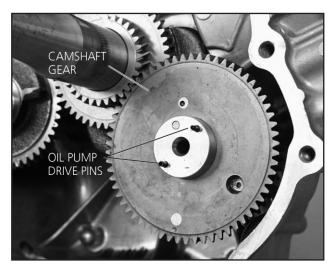


Figure 12.10 — Location of Oil Pump Drive Pins

13. Install the crankcase cover bolts and tighten (see Figure 12.11).

TORQUE SPECIFICATION
CRANKCASE COVER BOLTS
GN-320, GN-360 and GN-410
TORQUE = 18 foot-pounds or 216 inch-pounds

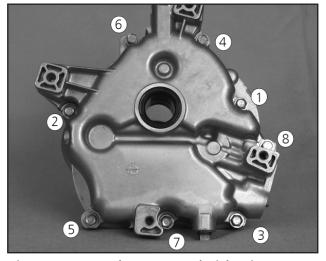
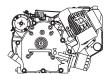



Figure 12.11 — Crankcase Cover Bolt Tightening Sequence

14. After tightening crankcase cover bolts, make sure the crankshaft turns freely.

OPTIONAL OIL FILTER

The optional oil filter is a "spin-on" type. An oil filter adapter is bolted to the oil filter pad. When installing the oil filter, coat the filter seal with engine oil. Then install the filter and tighten until its seal contacts the filter adapter. After the filter seal contacts the adapter, tighten 3/4 to 1 turn more. (See Figure 12.13)

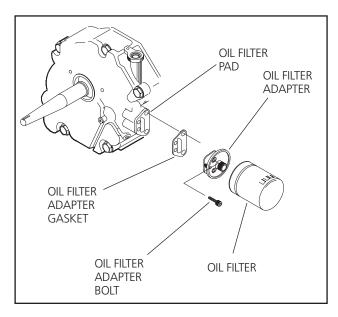


Figure 12.13 — Optional Oil Filter

LOW OIL PRESSURE SYSTEM

Some engine applications may be equipped with a low oil pressure switch (see Figure 12.14). The switch is a normally closed type, but is held open by engine oil pressure during cranking and running. Should engine oil pressure drop below approximately 10 psi for any reason, the switch contacts will close. With the switch contacts closed, the following will occur:

- A low oil pressure indicator will turn on and glow as power is available for its operation.
- The closure of the switch contacts will connect the primary ignition circuit to ground. Ignition will terminate, and the engine will shut down.

NOTE: Some differences may exist between low oil pressure systems. Refer to the electrical schematic/wiring diagram in the Owner's Manual for the specific application using this engine.

Figure 12.14 — Low Oil Indicator

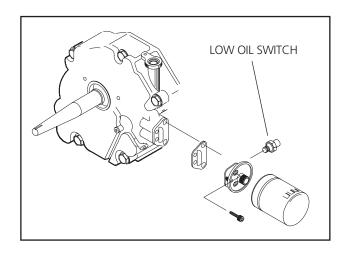


Figure 12.15 — Low Oil Switch With Oil Filter

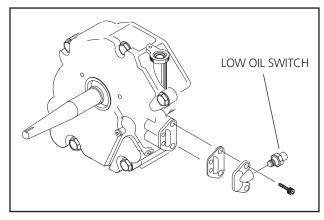
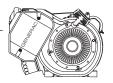



Figure 12.16 — Low Oil Switch Without Oil Filter

TORQUE SPECIFICATION
LOW OIL SWITCH
TORQUE = 9 foot-pounds or 108 inch-pounds

PROBLEM SOLVING

INTRODUCTION:

Problems that affect engine operation may be classified as one of, or a combination of two or more of the following:

- Engine will not start.
- Engine starts with difficulty.
- Engine lacks power.
- Engine vibrates.
- Engine overheats.
- Engine burns oil.

In many cases, the cause of a problem will be readily apparent. If this is not the case, check engine compression, as well as the ignition and fuel systems. Such a check can be performed quickly and is the best method of finding the cause of a failure. In addition, such a check may provide early detection of future failures.

CHECK COMPRESSION:

To check engine compression, remove the spark plug. Insert an automotive type compression gauge into the spark plug hole. Crank the engine until there is no further increase in pressure. The highest reading obtained is the engine compression pressure.

MINIMUM ALLOWABLE COMPRESSION PRESSURE COLD ENGINE GN-320, GN-360, GN-410 60 psi

If compression is poor, look for one or more of the following causes:

Loose cylinder head bolts.

Failed cylinder head gasket.

Burned valves or valve seats.

Insufficient valve clearance.

Warped cylinder head.

Warped valve stem.

Worn or broken piston ring(s).

Worn or damaged cylinder bore.

Broken connecting rod.

Worn valve seats or valves.

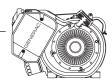
Worn valve guides.

CHECK IGNITION SYSTEM:

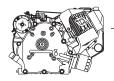
See "Testing the Ignition System" in Section 8 (Page 31).

CHECK FUEL SYSTEM:

Make sure the fuel tank has been properly filled with the correct fuel. If the engine is equipped with a fuel shutoff valve, make sure the valve is open. Make sure fuel is flowing through the fuel line and to the carburetor. Adjust the carburetor as needed. Make sure the choke closes all the way. If engine still will not start, remove and inspect the spark plug.


If the plug is WET, look for the following:

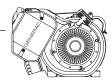
- 1. Overchoking.
- 2. Dirty air cleaner.
- 3. Excessively rich fuel-air mixture.
- 4. Water in the fuel.
- 5. Fuel leaking past the carburetor float needle. If the plug is DRY, look for the following:
- 1. Carburetor mounting gasket leaks.
- 2. Dirt or gum in carburetor or fuel line.
- 3. Carburetor float needle stuck closed.
- 4. Inoperative fuel pump (if so equipped).
- 5. Clogged fuel filter (if so equipped).


One way to determine if fuel is reaching the engine combustion chamber is to remove the spark plug and pour a small amount of gasoline into the spark plug hole. Reinstall the spark plug and crank the engine. If engine fires a few times then quits, check for the same conditions as a dry plug.

PROBLEM	POSSIBLE CAUSES	REMEDY
1. Engine will not start or starts with difficulty.	a. Fuel tank is empty. b. Low oil level. c. Dirty air cleaner. d. Obstructed fuel Line. e. Fuel tank cap vent hole is obstructed. f. Spark plug is fouled. g. Incorrect spark plug. h. Loose or defective ignition wiring. l. No ignition spark. j. Incorrect valve clearance. k. Poor compression.	a. Fill fuel tank. b. Replenish oil as necessary. c. Clean or replace air cleaner element. d. Clean fuel line or replace. e. Open cap vent hole. f. Replace spark plug. g. Replace with correct spark plug. h. Check wiring, repair or replace. I. Check ignition system, replace defective part(s). j. Reset valve clearance. k. Check for worn or scored cylinder.
2. Engine knocks.	 a. Carbon in combustion chamber. b. Loose flywheel. c. Worn cylinder. d. Loose or worn connecting rod. e. Incorrect valve clearance. f. Engine is overloaded. 	a. Clean carbon from head and piston. b. Check flywheel key and keyway, replace part(s) if necessary. Tighten flywheel nut. c. Replace crankcase. d. Replace connecting rod. Check crankpin diameter to see if crankshaft is bad. e. Reset to correct clearance. f. Reduce excessive load.
3. Engine misses under load.	a. Incorrect spark plug. b. Spark plug is fouled. c. Spark plug porcelain is cracked. d. Incorrect spark plug gap. e. Incorrect valve clearance. f. Weak valve springs.	a. Install correct spark plug. b. Clean and regap spark plug. c. Replace spark plug. d. Regap the spark plug. e. Reset valve clearance. f. Replace weak valve spring(s).
4. Engine lacks power.	a. Governor not set correctly. b. Incorrect spark plug c. Incorrect valve clearance. d. Worn piston rings. e. Low oil level. f. Air cleaner is obstructed. g. Valves or valve seats worn or burned.	 a. Adjust governor. b. Install correct spark plug. c. Reset valve clearance. d. Replace piston rings. e. Replenish oil to proper level. f. Clean or replace air cleaner. g. Grind valves and valve seats.
5. Engine overheats.	a. Air flow is obstructed. b. Cooling fins are clogged. c. Carbon buildup in combustion chamber. d. Engine is overloaded. e. Lack of lubrication	a. Remove obstructions. b. Clean cooling fine. c. Remove cylinder head and clean carbon. d. Reduce excessive loading. e. Replenish oil to proper level.
6. Engine vibrates excessively.	a. Engine mounting bolts loose. b. Bent crankshaft. c. Problem in equipment connected to engine.	a. Tighten mounting bolts. b. Replace crankshaft. c. Check equipment driven by engine.

PROBLEM	POSSIBLE CAUSES	REMEDY
7. Engine surges or . runs unevenly	 Vent hole in fuel tank cap plugged. Governor parts sticking or binding. Carburetor throttle linkage, throttle shaft binding. Intermittent ignition spark. Improper carburetor adjustment. Dirty carburetor. 	 Open vent hole in tank cap. Clean governor parts and replace as necessary. Clean, lubricate, adjust or repair sticking parts. Test ignition as per Section 8, repair or replace bad parts as necessary. Adjust carburetor. Clean carburetor.
8. Engine uses excessive amounts of oil.	 Engine speed too fast. Oil level too high. Oil filler cap loose, or cap gasket damaged. Breather damaged or dirty. Drain holes in breather clogged. Gaskets or seals leaking. Valve guides worn excessively. Cylinder walls worn. Piston rings and/or grooves worn. Oil passages obstructed. 	 Adjust engine speed to specifications. Drain excess oil from crankcase. Replace cap gasket and tighten cap. Clean or replace breather as necessary. Unclog drain holes in breather. Replace gaskets or seals Replace cylinder head. Replace crankcase. Install new rings and/or piston. Clean out oil passages.
9. Crankshaft oil seal leaks.	 Crankcase breather dirty or defective. Oil seal hardened or worn. Crankshaft seal contact surface is worn. Crankshaft sleeve bearing worn. Seal not seated squarely in bore. New seal damaged during installation. Bent crankshaft. 	 Clean or replace breather. Replace oil seal. Check crankshaft size and replace if worn. Replace sleeve bearing. Replace with new seal. Replace with new seal. Check crankshaft for straightness, replace if necessary.
10. Breather is passing oil.	 Engine speed too fast. Oil level too high. Oil filler cap loose, or cap gasket damaged. Breather damaged or dirty. Drain holes in breather clogged. Piston ring end gaps are aligned. Rings not properly seated. 	 Adjust engine speed to specifications. Drain excess oil from crankcase. Replace cap gasket and tighten cap. Clean or replace breather as necessary. Unclog drain holes in breather. Rotate ring end gaps, stagger 90° apart. Check for worn or "out of round" cylinder. Install new rings. Break in new rings with engine under varying loads.

GENERAL SPECIFICATIONS

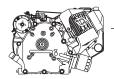

MODEL	GN-320	GN-360	GN-410
BORE	3.15 inches (80mm)	3.35 inches (85mm)	3.54 inches (90mm)
STROKE	2.52 inches (64mm)	2.52 inches (64mm)	2.52 inches (64mm)
DISPLACEMENT	322cc	363cc	407сс
OIL CAPACITY			
W/O FILTER CHANGE	46 ounces (1350 ml)	46 ounces (1350 ml)	46 ounces (1350 ml)
WITH FILTER CHANGE	51 ounces (1500 ml)	51 ounces (1500 ml)	51 ounces (1500 ml)

VALVE TRAIN

MODEL	GN-320	GN-360	GN-410
VALVE SEAT WIDTH:			
DESIGN WIDTH	.085093 inch (2.15-2.35 mm)		
VALVE SEAT ANGLE		46 degrees	
INTAKE VALVE STEM			
DIAMETER:			
DESIGN DIAMETER	.274275 inch	.274275 inch	.274275 inch
	(6.965-6.980 mm)	(6.965-6.980 mm)	(6.965-6.980 mm)
EXHAUST VALVE STEM			
DIAMETER:			
DESIGN DIAMETER	.273274 inch	.273274 inch	.273274 inch
	(6.945-6.960 mm)	(6.945-6.960 mm)	(6.945-6.960 mm)
TAPPET DIAMETER			
INTAKE AND EXHAUST:			
DESIGN DIAMETER	.352353 inch	.352353 inch	.352353 inch
	(8.957-8.975 mm)	(8.957-8.975 mm)	(8.957-8.975 mm)
VALVE SPRINGS:			
FREE LENGTH	1.752-1.764 inch	1.752-1.764 inch	1.752-1.764 inch
	(44.5-44.8 mm)	(44.5-44.8 mm)	(44.5-44.8 mm)
FORCE REQUIRED TO			
COMPRESS SPRING			
TO 1.59 INCH (4.33 mm)	15.3-16.9 pounds	15.3-16.9 pounds	15.3-16.9 pounds
	(6.9-7.6 kg)	(6.9-7.6 kg)	(6.9-7.6 kg)
VALVE CLEARANCE:			
INTAKE	.002004 inch	.002004 inch	.002004 inch
	(.0510 mm)	(.0510 mm)	(.0510 mm)
EXHAUST	002004 inch	002004 inch	002004 inch
	(.0510 mm)	(.0510 mm)	(.0510 mm)
VALVE GUIDES:			
DESIGN DIAMETER	.275276 inch	.275276 inch	.275276 inch
	(7.005-7.020 mm)	(7.005-7.020 mm)	(7.005-7.020 mm)

CRANKSHAFT END PLAY

ALLOWABLE			
END PLAY	.005026 inch	.005026 inch	.005026 inch
	(0.12-0.66 mm)	(0.12-0.66 mm)	(0.12-0.66 mm)


CRANKCASE ASSEMBLY

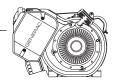
MODEL	GN-320	GN-360	GN-410
CYLINDER BORE:			
DESIGN DIAMETER	3.150-3.151 inch	3.346-3.347 inch	3.543-3.544 inch
	(80.000-80.025 mm)	(85.000-85.025 mm)	(90.000-90.025 mm)
VALVE TAPPET BORE:			
DESIGN DIAMETER	0.354-0.355 inch	0.354-0.355 inch	0.354-0.355 inch
	(8.994-9.020 mm)	(8.994-9.020 mm)	(8.994-9.020 mm)
CRANKSHAFT SLEEVE			
BEARING:			
DESIGN DIAMETER	1.380-1.381 inch	1.380-1.381 inch	1.380-1.381 inch
(WHERE APPLICABLE)	(35.065-35.090 mm)	(35.065-35.090 mm)	(35.065-35.090 mm)
GOVERNOR ARM			
BORE:			
DESIGN DIAMETER	0.239-0.240 inch	0.239-0.240 inch	0.239-0.240 inch
	(6.07-6.10 mm)	(6.07-6.10 mm)	(6.07-6.10 mm)
CAMSHAFT BEARING:			
DESIGN DIAMETER	1.083-1.084 inch	1.083-1.084 inch	1.083-1.084 inch
	(27.50-27.53 mm)	(27.50-27.53 mm)	(27.50-27.53 mm)
GOVERNOR ARM			
DIAMETER:			
DESIGN DIAMETER:	0.234-0.238 inch	0.234-0.238 inch	0.234-0.238 inch
	(5.95-6.05 mm)	(5.95-6.05 mm)	(5.95-6.05 mm)

^{*}Later model large frame GN engines have no crankshaft sleeve bearing.

CRANKCASE COVER ASSEMBLY

MODEL	GN-320	GN-360	GN-410
CRANKSHAFT BEARING BORE:			
DESIGN DIAMETER	1.380-1.381 inch	1.380-1.381 inch	1.380-1.381 inch
	(35.065-35.090 mm)	(35.065-35.090 mm)	(35.065-35.090 mm)
CAMSHAFT BEARING BORE:			
DESIGN DIAMETER	1.299-1.300 inch	1.299-1.300 inch	1.299-1.300 inch
	(33.00-33.03 mm)	(33.00-33.03 mm)	(33.00-33.03 mm)
BALANCER BEARING BORE:			
DESIGN DIAMETER	0.984-0.985 inch	0.984-0.985 inch	0.984-0.985 inch
	(25.00-25.03 mm)	(25.00-25.03 mm)	(25.00-25.03 mm)
GOVERNOR GEAR			
SHAFT DIAMETER	0.236-0.237 inch	0.236-0.237 inch	0.236-0.237 inch
	(6.004-6.012 mm)	(6.004-6.012 mm)	(6.004-6.012 mm)
OIL PUMP INNER ROTOR SHAFT DIAMETER:			
DESIGN DIAMETER	0.353-0.354 inch	0.353-0.354 inch	0.353-0.354 inch
	(8.969-8.987 mm)	(8.969-8.987 mm)	(8.969-8.987 mm)

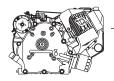
CRANKSHAFT


MODEL	GN-320	GN-360	GN-410
CRANKPIN DIAMETER:			
DESIGN DIAMETER	1.417-1.418 inch	1.417-1.418 inch	1.417-1.418 inch
	(35.99-36.01 mm)	(35.99-36.01 mm)	(35.99-36.01 mm)
CRANKSHAFT			
MAIN BEARING			
(FLYWHEEL END):			
DESIGN DIAMETER	1.378-1.379 inch	1.378-1.379 inch	1.378-1.379 inch
	(35.000-35.012 mm)	(35.000-35.012 mm)	(35.000-35.012 mm)
CRANKSHAFT			
MAIN BEARING			
(PTO END):			
DESIGN DIAMETER	1.378-1.379 inch	1.378-1.379 inch	1.378-1.379 inch
	(35.000-35.012 mm)	(35.000-35.012 mm)	(35.000-35.012 mm)

CONNECTING ROD ASSEMBLY

MODEL	GN-320	GN-360	GN-410
LARGE END			
INSIDE DIAMETER:			
DESIGN DIAMETER	1.419-1.420 inch	1.419-1.420 inch	1.419-1.420 inch
	(36.06-36.07 mm)	(36.06-36.07 mm)	(36.06-36.07 mm)
SMALL END			
INSIDE DIAMETER:			
DESIGN DIAMETER	0.788-0.789 inch	0.788-0.789 inch	0.788-0.789 inch
	(20.02-20.03 mm)	(20.02-20.03 mm)	(20.02-20.03 mm)
PISTON PIN LENGTH:			
DESIGN LENGTH	2.669-2.685 inch	2.669-2.685 inch	2.669-2.685 inch
	(67.8-68.2 mm)	(67.8-68.2 mm)	(67.8-68.2 mm)
PISTON PIN			
OUTSIDE DIAMETER:			
DESIGN DIAMETER	0.786-0.787 inch	0.786-0.787 inch	0.786-0.787 inch
	(19.984-19.995 mm)	(19.984-19.995 mm)	(19.984-19.995 mm)

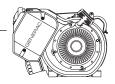
PISTON


MODEL	GN-320	GN-360	GN-410
PISTON MAJOR			
DIAMETER:			
DESIGN DIAMETER	3.147-3.148 inch	3.343-3.344 inch	3.540-3.541 inch
	(79.928-79.948 mm)	(84.928-84.948 mm)	(89.928-89.948 mm)
PISTON MINOR			
DIAMETER:			
DESIGN DIAMETER	3.135-3.136 inch	3.332-3.333 inch	3.529-3.530 inch
	(79.628-79.648 mm)	(84.624-84.648 mm)	(89.628-89.648 mm)

PISTON (CONTINUED)

MODEL	GN-320	GN-360	GN-410
WRIST PIN BORE			
DIAMETER:			
DESIGN DIAMETER	0.787-0.788 inch	0.787-0.788 inch	0.787-0.788 inch
	(20.000-20.011 mm)	(20.000-20.011 mm)	(20.000-20.011 mm)
TOP RING GROOVE			
WIDTH:			
DESIGN WIDTH	0.060-0.061 inch	0.060-0.061 inch	0.060-0.061 inch
	(1.530-1.555 mm)	(1.530-1.555 mm)	(1.530-1.555 mm)
SECOND RING			
GROOVE WIDTH:			
DESIGN WIDTH	0.060-0.061 inch	0.060-0.061 inch	0.060-0.061 inch
	(1.530-1.555 mm)	(1.530-1.555 mm)	(1.530-1.555 mm)
OIL CONTROL RING			
GROOVE WIDTH:			
DESIGN WIDTH	0.119-0.120 inch	0.119-0.120 inch	0.119-0.120 inch
	(3.03-3.055 mm)	(3.03-3.055 mm)	(3.03-3.055 mm)
TOP RING WIDTH:			
DESIGN WIDTH	0.058-0.059 inch	0.058-0.059 inch	0.058-0.059 inch
	(1.47-1.49 mm)	(1.47-1.49 mm)	(1.466-1.490 mm)
TOP RING END GAP: *			
DESIGN END GAP	0.007-0.017 inch	0.006-0.016 inch	0.010-0.020 inch
	(.1843 mm)	(.1540 mm)	(.2550 mm)
SECOND RING WIDTH:			
DESIGN WIDTH	0.058-0.059 inch	0.058-0.059 inch	0.058-0.059 inch
	(1.465-1.490 mm)	(1.465-1.490 mm)	(1.465-1.490 mm)
SECOND RING END GAP: *			
DESIGN END GAP	0.007-0.017 inch	0.009-0.024 inch	0.010-0.020 inch
	(0.18-0.43 mm)	(0.23-0.60 mm)	(0.25-0.50 mm)
OIL CONTROL RING			
WIDTH:			
DESIGN WIDTH	0.017-0.019 inch	0.017-0.019 inch	0.017-0.019 inch
	(0.432-0.483 mm)	(0.432-0.483 mm)	(0.432-0.483 mm)
OIL CONTROL RING			
END GAP: *			
DESIGN END GAP	0.015-0.055 inch	0.015-0.055 inch	0.015-0.055 inch
	(0.39-1.40 mm)	(0.39-1.40 mm)	(0.39-1.40 mm)

*NOTE 1: Measure end gap with ring pushed down in cylinder to depth of 2.75 inches

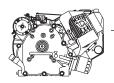


CAMSHAFT ASSEMBLY

MODEL	GN-320	GN-360	GN-410
MAIN CAMSHAFT			
BEARING DIAMETER			
(FLYWHEEL END):			
DESIGN DIAMETER	1.081-1.082 inch	1.081-1.082 inch	1.081-1.082 inch
	(27.46-27.48 mm)	(27.46-27.48 mm)	(27.46-27.48 mm)
MAIN CAMSHAFT			
BEARING DIAMETER			
(PTO END):			
DESIGN DIAMETER	1.297-1.298 inch	1.297-1.298 inch	1.297-1.298 inch
	(32.96-32.98 mm)	(32.96-32.98 mm)	(32.96-32.98 mm)
CAM LIFT:			
DESIGN LIFT	0.211 inch	0.211 inch	0.211 inch
	(5.36 mm)	(5.36 mm)	(5.36 mm)
BASE CIRCLE			
DIAMETER OF CAM:			
DESIGN DIAMETER	1.024 inch	1.024 inch	1.024 inch
	(26.00 mm)	(26.00 mm)	(26.00 mm)
COMPRESSION			
RELEASE LIFT			
(MEASURED AT TAPPET):			
DESIGN LIFT	0.029-0.033 inch	0.029-0.033 inch	0.029-0.033 inch
	(0.745-0.830 mm)	(0.745-0.830 mm)	(0.745-0.830 mm)

BALANCER ASSEMBLY

MODEL	GN-320	GN-360	GN-410
MAIN BALANCER			
BEARING DIAMETER			
(FLYWHEEL END):			
DESIGN DIAMETER	0.982-0.983 inch	0.982-0.983 inch	0.982-0.983 inch
	(24.96-24.98 mm)	(24.96-24.98 mm)	(24.96-24.98 mm)
MAIN BALANCER			
BEARING DIAMETER			
(PTO END):			
DESIGN DIAMETER	0.982-0.983 inch	0.982-0.983 inch	0.982-0.983 inch
	(24.96-24.98 mm)	(24.96-24.98 mm)	(24.96-24.98 mm)


OIL PUMP

MODEL	GN-320	GN-360	GN-410
PUMP TIP CLEARANCE *:			
DESIGN CLEARANCE	0.0122-0.0123 inch	0.0122-0.0123 inch	0.0122-0.0123 inch
	(0.311-0.313 mm)	(0.311-0.313 mm)	(0.311-0.313 mm)
INNER ROTOR BORE:			
DESIGN BORE	0.886 inch	0.886 inch	0.886 inch
	(22.5 mm)	(22.5 mm)	(22.5 mm)
INNER ROTOR THICKNESS:			
DESIGN THICKNESS	0.471-0.472 inch	0.471-0.472 inch	0.471-0.472 inch
	(11.98-12.00 mm)	(11.98-12.00 mm)	(11.98-12.00 mm)
OUTER ROTOR			
OUTSIDE DIAMETER:			
DESIGN DIAMETER	1.296-1.297 inch	1.296-1.297 inch	1.296-1.297 inch
	(32.92-32.95 mm)	(32.92-32.95 mm)	(32.92-32.95 mm)
OUTER ROTOR			
THICKNESS:			
DESIGN THICKNESS	0.472-0.473 inch	0.472-0.473 inch	0.472-0.473 inch
	(12.00-12.03 mm)	(12.00-12.03 mm)	(12.00-12.03 mm)
OIL PRESSURE RELIEF			
VALVE SPRING:			
FREE LENGTH	0.928 inch	0.928 inch	0.928 inch
	23.57 mm	23.57 mm	23.57 mm

^{*}NOTE 2: Measure pump tip clearance on shaft in crankcase cover.

COMPRESSION PRESSURE

MODEL	GN-320	GN-360	GN-410
WHILE CRANKING			
(COLD ENGINE)	55 psi min.	55 psi min.	55 psi min.

TORQUE SPECIFICATIONS

MODEL	GN-320	GN-360	GN-410
Rocker Cover Screws	4 ft-lbs (48 in-lbs)	4 ft-lbs (48 in-lbs)	4 ft-lbs (48 in-lbs)
Rocker Arm Jam Nut	14.5 ft-lbs (174 in-lbs)	14.5 ft-lbs (174 in-lbs)	14.5 ft-lbs (174 in-lbs)
Cylinder Head Bolts	44 ft-lbs (528 in-lbs)	44 ft-lbs (528 in-lbs)	44 ft-lbs (528 in-lbs)
Connecting Rod Bolts	18 ft-lbs (216 in-lbs)	18 ft-lbs (216 in-lbs)	18 ft-lbs (216 in-lbs)
Flywheel Nut	90 ft-lbs (1080 in-lbs)	90 ft-lbs (1080 in-lbs)	90 ft-lbs (1080 in-lbs)
Crankcase Cover Bolts	18 ft-lbs (216 in-lbs)	18 ft-lbs (216 in-lbs)	18 ft-lbs (216 in-lbs)
Ignition Coil Bolts	5 ft-lbs (60 in-lbs)	5 ft-lbs (60 in-lbs)	5 ft-lbs (60 in-lbs)
Spark Plug	13 ft-lbs (156 in-lbs)	13 ft-lbs (156 in-lbs)	13 ft-lbs (156 in-lbs)
Rewind Starter Screws	5 ft-lbs (60 in-lbs)	5 ft-lbs (60 in-lbs)	5 ft-lbs (60 in-lbs)
Starter Motor Bolts	18 ft-lbs (216 in-lbs)	18 ft-lbs (216 in-lbs)	18 ft-lbs (216 in-lbs)
Intake Manifold Screws	7 ft-lbs (84 in-lbs)	7 ft-lbs (84 in-lbs)	7 ft-lbs (84 in-lbs)
Carburetor to Intake Manifold	7 ft-lbs (84 in-lbs)	7 ft-lbs (84 in-lbs)	7 ft-lbs (84 in-lbs)
Blower Housing Screws	7 ft-lbs (84 in-lbs)	7 ft-lbs (84 in-lbs)	7 ft-lbs (84 in-lbs)
Upper and Lower Shroud Screws	7 ft-lbs (84 in-lbs)	7 ft-lbs (84 in-lbs)	7 ft-lbs (84 in-lbs)
Governor Lever Clamp Bolt	5.8 ft-lbs (70 in-lbs)	5.8 ft-lbs (70 in-lbs)	5.8 ft-lbs (70 in-lbs)
Oil Filter Adapter Bolts	18 ft-lbs (216 in-lbs)	18 ft-lbs (216 in-lbs)	18 ft-lbs (216 in-lbs)
Low Oil Switch	9 ft-lbs (108 in-lbs)	9 ft-lbs (108 in-lbs)	9 ft-lbs (108 in-lbs)